miun.sePublikasjoner
Endre søk
Begrens søket
1 - 5 of 5
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Aranda, Jesus Javier Lechuga
    et al.
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för elektronikkonstruktion.
    Bader, Sebastian
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för elektronikkonstruktion.
    Oelmann, Bengt
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för elektronikkonstruktion.
    A space-coiling resonator for improved energy harvesting in fluid power systems2019Inngår i: Sensors and Actuators A-Physical, ISSN 0924-4247, E-ISSN 1873-3069, Vol. 291, s. 58-67Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Pressure fluctuation energy harvesting devices are promising alternatives to power up wireless sensors in fluid power systems. In past studies, classical Helmholtz resonators have been used to enhance the energy harvesting capabilities of these harvesters. Nevertheless, for fluctuations with frequency components in the range of less than 1000 Hz, the design of compact resonators is difficult, mostly for their poor acoustic gain. This paper introduces a space-coiling resonator fabricated using 3D printing techniques. The proposed resonator can achieve a better acoustic gain bounded by a small bulk volume compared to a classic Helmholtz resonator, improving the energy harvesting capabilities of pressure fluctuation energy harvesters. The resonator is designed and evaluated using finite-element-method techniques and examined experimentally. Three space-coiling-resonators are designed, manufactured and compared to classic Helmholtz resonators for three frequencies: 280 Hz, 480 Hz and 920 Hz. This work displays the possibility of compact, high-performance pressure fluctuation energy harvesters and the advantages of the space-coiling printed resonators to enhance the harvesting performance.

  • 2.
    Aranda, Jesus Javier Lechuga
    et al.
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för elektronikkonstruktion.
    Bader, Sebastian
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för elektronikkonstruktion.
    Oelmann, Bengt
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för elektronikkonstruktion.
    An Apparatus For The Performance Estimation Of Pressure Fluctuation Energy Harvesters2018Inngår i: IEEE Transactions on Instrumentation and Measurement, ISSN 0018-9456, E-ISSN 1557-9662, Vol. 67, nr 11, s. 2705-2713Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Hydraulic pressure fluctuation energy harvesters are promising alternatives to power up wireless sensor nodes in hydraulic systems. The characterization of these harvesters under dynamic and band-limited pressure signals is imperative for the research and development of novel concepts. To generate and control these signals in a hydraulic medium, a versatile apparatus capable of reproducing pressure signals is proposed. In this paper, a comprehensive discussion of the design considerations for this apparatus and its performance is given. The suggested setup enables the investigation of devices tailored for the harvesting of energy in conventional hydraulic systems. To mimic these systems, static pressures can be tuned up to 300 bar, and the pressure amplitudes with a maximum of 28 Bar at 40 Hz and 0.5 bar at 1000 Hz can be generated. In addition, pressure signals found in commercial hydraulic systems can be reproduced with good accuracy. This apparatus proves to be an accessible, robust, and versatile experimental setup to create environments for the complete performance estimation of pressure fluctuation energy harvesters. 

  • 3.
    Aranda, Jesus Javier Lechuga
    et al.
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för elektronikkonstruktion.
    Bader, Sebastian
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för elektronikkonstruktion.
    Oelmann, Bengt
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för elektronikkonstruktion.
    Force Transmission Interfaces for Pressure Fluctuation Energy Harvesters2018Inngår i: IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society, IEEE, 2018, s. 4230-4235, artikkel-id 8591058Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Wireless sensor nodes in state of the art fluid power systems used in monitoring and maintenance prediction demand long lasting power sources that do not rely on batteries. Energy harvesting is a promising technology that can provide the required energy to power wireless sensors. Pressure fluctuation energy harvesters can be employed in conventional hydraulic systems to convert the acoustic pressure fluctuation to electrical power. Present studies have explored the overall efficiency of these devices while experimentally describing losses in piezoelectric and circuit interfaces, nevertheless there is no study on the fluid to mechanical force transmission efficiency. In this paper we investigate the pressure to force transmission rate of two types of fluid to mechanical interfaces: a flat metal plate and a conventional hydraulic piston. The interfaces are investigated in conditions similar to those found in conventional hydraulic systems. The study shows that flat plate exhibit good force transmission for low pressure applications with a constant rate across frequencies, while exhibiting a decrease in force transmission at higher pressures. On the other hand the piston exhibit a more robust pressure design, with a constant force transmission rate at all pressures but with a dampening of force at higher frequencies. It is shown that small differences in force transmission ratios can have a considerable impact on the power generation.

  • 4.
    Aranda, Jesus Javier Lechuga
    et al.
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för elektronikkonstruktion.
    Oelmann, Bengt
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för elektronikkonstruktion.
    Bader, Sebastian
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för elektronikkonstruktion.
    Fluid coupling interfaces for hydraulic pressure energy harvesters2017Inngår i: 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), IEEE, 2017, s. 1556-1562, artikkel-id 8014240Konferansepaper (Fagfellevurdert)
    Abstract [en]

    The need for wireless sensor networks that can run for long times without the need of battery replacement has risen the need for energy harvesters. Industrial environments have plenty of energy sources that can be harvested; pressure fluctuations are a high energy density source that can be harvested using piezoelectric devices. Present devices have introduced flat metallic plates as the main force transmission elements for hydraulic fluctuations energy harvesters. In this paper, we analyze the force transmission efficiency of flat plates when used as the primary fluid coupling interface in hydraulic energy harvesters. Previous work has been focused on the optimization of circuit matching and pressure ripple amplification. In this work, we offer a look into the efficiencies of flat plates in different configurations and pressure loads. The analysis shows that despite the reasonable force transmission efficiency of flat plates in low-pressure environments, the overall efficiency of hydraulic energy harvesters can be improved if instead of flat plates, conventional hydraulic actuators, such as piston cylinders, could be used. 

  • 5.
    Lechuga Aranda, Jesus Javier
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för elektronikkonstruktion.
    Interfaces In Hydraulic Pressure Energy Harvesters2019Licentiatavhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    The fourth industrial revolution is here and with it a tidal wave of challenges for its prosperous implementation. One of the greatest challenges frustrating the development of the internet of things, and hence the next industrial revolution, is the powering of wireless sensors, as these depend on batteries with a limited lifetime. Recent advances have shown that energy harvesting technologies can be employed to extend the lifetime of batteries and ultimately replace them, thus facilitating the deployment of autonomous self-powered sensors, key components of the internet of things.

    Energy harvesting is the process of capturing ambient energy and convertingit into electric power. For energy harvesting devices it is crucial that the transduction of energy is as efficient as possible, meaning that the methods for capturing, interfacing and converting the ambient energy should be understood and characterized for every application. This thesis investigates the harvesting of the energy found in pressure fluctuations in hydraulic systems, a widely used power transmission system used in the industry and consumer applications; the focus is on the fluid interface and energy focusing methods.

    In summary, the contributions in this thesis show that the methods for converting pressure fluctuations in hydraulic systems to electrical power depend on the hydraulic system environment, in essence, the static pressure and the frequency of the pressure fluctuations. The results can serve as a starting point in the research, design, and development of hydraulic pressure energy harvesters.

1 - 5 of 5
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf