The enantiomers of the naturally occurring alkaloid dihydropinidine 1, potential antifeedants against the pine weevil, Hylobius abietis, were prepared by diastereoselective, dimethylzinc mediated addition of pinacolyl 2-propenylboronate 14 to nitrones (R)- and (S)-2-methyl tetrahydropyridine-N-oxide 3, prepared from d- and l-alanine, respectively.
A medium-length, straight-chain alkanoic acid, nonanoic acid, is known from laboratory microassays to be an antifeedant in adults of the large pine weevil, Hylobius abietis (L.) (Coleoptera: Curculionidae). Our hypothesis was that we could find new, less volatile alkanoic acids or related compounds suitable for field application and with improved long-term duration. Alkanoic acids of varying chain lengths (C6-C13) were tested for antifeedant activity in H. abietis adults. Microassay choice tests showed that straight-chain (C6-C11) alkanoic acids were active. However, high activities were restricted to the (C6-C10) acids, with the C9 (nonanoic acid) at 4 μmol cm-2 being the most active one. In a no-choice test on pine twigs, the antifeedant effect of C10 acid was lower than that of the C8 and C9 acids. In microassays, less volatile methyl-branched alkanoic acids exhibited lower antifeedant activities than did the corresponding straight-chain ones. However, the most active of the methyl-branched acids, 2-methyldecanoic acid, had an activity similar to that of nonanoic acid. Compounds related to nonanoic acid were either active (1-nonanol), weakly active (nonanoic anhydride), or inactive (nonanal, sodium nonanoate). The anhydride was highly active in the microassay, but less active on twigs. The antifeedant effects of the straight chain (C8-C10) alkanoic acids against pine weevil feeding were tested in the field. In contrast to the results from the twig tests, the less volatile C10 acid was more active in the field for the protection of transplants on fresh clear cuts over a 3-month period than both the C8 and C9 acids. Phytotoxic effects of the alkanoic acids were observed both in the field and in laboratory studies. If a protective layer of paraffin was applied to the stem prior to application of the alkanoic acids, these undesired side effects were reduced.
Linden (Tilia cordata) bark contains antifeedants effective against the large pine weevil, Hylobius abietis. Soxhlet extraction of inner and outer bark resulted in an extract which showed antifeedant activity in a micro-feeding assay. The extract was fractionated by chromatography on silica gel using gradient elution with solvents of increasing polarity. The content of the fractions obtained was monitored by thin layer- and gas chromatography. Fractions of similar chemical composition were merged. Two of the 17 fractions showed antifeedant activity in the micro feeding assay. Nonanoic acid was identified in both of these fractions. Subsequent testing in the micro feeding assay showed that nonanoic acid possessed strong antifeedant activity against H. abietis adults.
Latex-based coatings for protection of tree seedlings against pest insect feeding are evaluated with respect to surface-, mechanical-, and release properties and antifeedant activity. The latex dispersion Eudragit copolymer (EC) was used to form the coatings, 2,6-di-tert-butyl-4-methylphenol (BHT) and cis-dihydropinidine (Alk) as antifeedants, and a thickener and a alkylglucoside based nonionic surfactant were used as additives to optimize the release- and mechanical properties of coatings. Coating characterization was performed with respect to surface morphology (atomic force microscopy, AFM) and surface wetting (contact angle), as well as to mechanical (tensile stress- and tensile strain at break) properties. Surface smoothness and wettability as well as elasticity increased with addition of the surfactant. The optimized coatings were found to be elastic and water resistant at 3-6 wt.% of BHT and 3 wt.% of surfactant. BHT was released into SDS/water at very low rates. Several formulations of BHT and Alk were efficient in preventing the feeding on conifer bark by a pine insect, Hylobius abietis both in laboratory (no-choice) and in held Q months) tests.