miun.sePublications
Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Dornburg, Veronika
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Physics and Mathematics.
    Estimating GHG emission mitigation supply curves of large-scale biomass use on a country level2007In: Biomass and Bioenergy, ISSN 0961-9534, E-ISSN 1873-2909, Vol. 31, no 1, p. 46-65Article in journal (Refereed)
    Abstract [en]

    This study evaluates the possible influences of a large-scale introduction of biomass material and energy systems and their market volumes on land, material and energy market prices and their feedback to greenhouse gas (GHG) emission mitigation costs. GHG emission mitigation supply curves for large-scale biomass use were compiled using a methodology that combines a bottom-up analysis of biomass applications, biomass cost supply curves and market prices of land, biornaterials and bioenergy carriers. These market prices depend on the scale of biomass use and the market volume of materials and energy carriers and were estimated using own-price elasticities of demand. The methodology was demonstrated for a case study of Poland in the year 2015 applying different scenarios on economic development and trade in Europe. For the key technologies considered, i.e. medium density fibreboard, poly lactic acid, electricity and methanol production, GHG emission mitigation costs increase strongly with the scale of biomass production. Large-scale introduction of biomass use decreases the GHG emission reduction potential at costs below 50EURO/Mg CO2eq with about 13-70% depending on the scenario. Biomaterial production accounts for only a small part of this GHG emission reduction potential due to relatively small material markets and the subsequent strong decrease of biomaterial market prices at large scale of production. GHG emission mitigation costs depend strongly on biomass supply curves, own-price elasticity of land and market volumes of bioenergy carriers. The analysis shows that these influences should be taken into account for developing biomass implementations strategies.

  • 2.
    Dornburg, Veronika
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Physics and Mathematics.
    Optimising waste treatment systems - Part A: Methodology and technological data for optimising energy production and economic performance2006In: Resources, Conservation and Recycling, ISSN 0921-3449, E-ISSN 1879-0658, Vol. 49, no 1, p. 68-88Article in journal (Refereed)
    Abstract [en]

    The treatment and utilisation of biomass residues and waste for energy and recycling can contribute significantly to greenhouse gas emission reduction. Therefore, a waste treatment structure should be designed for an efficient saving of fossil primary energy in terms of maximal primary energy savings or minimal costs per unit of primary energy savings. However, this is a complex task, given the large number of technologies, recycling options and their logistic consequences, that necessitate an integrated analysis. Also, on longer term various new and improved technologies become available which can affect performances for options from an economic and/or energy point of view. For that reason, an optimisation tool, that optimises a biomass and waste treatment system for a given amount of biomass and waste, is developed in this study. This optimal biomass and waste treatment system is composed of several treatment installations, that are characterised by scale, location and kind of technology. Important aspects that are taken into account in the analysis are heat distribution, biomass and waste transport and economies of scale. A broad variety of technologies for material recycling, conversion of biomass and/or waste to heat, electricity or transportation fuel are included in the optimisation tool. Performance data of these technologies are based on an extensive review. Examples of included technologies comprise: integrated gasification with combined cycle, waste incineration, pyrolysis, digestion, co-firing in fossil power plants, biomass incineration, hydro-thermal upgrading, paper recycling and chipboard production. A comparison of the different technologies in relation to scale shows that primary energy savings and costs per unit of primary energy savings diverge significantly. In general, the optimisation tool developed here is suitable for analyses of optimal biomass and waste treatment structures in different regions with regard to primary energy savings and their costs. By means of scenario analysis, robust optimal solutions in terms of primary energy savings and their costs can be identified and the influence of important parameters can be analysed. A case study of the Dutch biomass and waste treatment systems has been carried out with the optimisation tool and is presented in part two of this article.

  • 3.
    Dornburg, Veronika
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Physics and Mathematics.
    Eggers, Thies
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Physics and Mathematics.
    Gustavsson, Leif
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Physics and Mathematics.
    Integrated carbon analysis of biomass production on fallow agricultural land and product substitution in Sweden - preliminary results2006Conference paper (Refereed)
    Abstract [en]

    An important option in the Swedish context to reduce its net emissions of carbon dioxide (CO2) is the increased use of biomass for energy and material substitution. On fallow agricultural land additional production of biomass would be possible. We analyse biomass production systems based on Norway spruce, hybrid poplar and willow hybrids and the use of this biomass to replace fossil energy and energy intensive material systems. The highest biomass production potential is for willow in southern Sweden. Fertilisation management of spruce could shorten the rotation lengths by about 17%. The fertilised production of Norway spruce with use of harvested timber for construction and use of remaining woody biomass for heat and power production gives the largest reductions of carbon emissions per hectare under the assumptions made. The use of willow for heat and power and of fertilised spruce for a wood product mix lead to the highest fossil primary energy savings in our scenarios. Spruce cultivations can achieve considerable carbon emission reductions in the long term, but willow and poplar might be a good option when fossil energy savings and carbon emission reductions should be achieved in the short term.

  • 4.
    Dornburg, Veronika
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Physics and Mathematics.
    Faaij, APC
    Optimising waste treatment systems - Part B: Analyses and scenarios for The Netherlands2006In: Resources, Conservation and Recycling, ISSN 0921-3449, E-ISSN 1879-0658, Vol. 48, no 3, p. 227-248Article in journal (Refereed)
    Abstract [en]

    Material recycling as well as energetic production of biomass residues and other solid wastes could significantly contribute to fossil primary energy savings. Waste treatment should, therefore, aim to combine pollution abatement with the efficient saving of fossil primary energy. This article identifies optimal waste treatment strategies in The Netherlands. Here, an optimal strategy is one that either maximises the fossil primary energy savings or minimises the costs per unit of fossil primary energy savings that are achieved by the utilisation of available biomass residues and wastes. Also, the influence of different factors - for example, the availability of wastes or technological developments - on the robustness of technological options and on the variation of costs and fossil primary energy savings is studied. With a specially developed optimisation tool (described in Part I of this article series) several variants of Dutch waste treatment systems ('scenarios') are analysed by back casting to the year 2020. This tool allows for quick analyses of complete waste treatment infrastructures. The results show that the objective of the Dutch government to supply 120PJ of primary energy demand in 2020 from biomass and waste seems more than feasible, while in 2000 about 43 PJ were realised. Including material recycling up to 437 PJ primary energy could be saved with an optimised waste treatment infrastructure. Choices made about alternative waste treatment strategies influence the costs strongly. Total costs for the Dutch waste treatment system - not considering revenues from waste treatment tariffs - vary from revenues of 230EUEO million/year to costs of 820EURO million/year. The contributions of material and energy recycling to avoid primary energy use change significantly under different preconditions. In the 11 different scenarios considered, of the primary energy savings achieved 25-76% resulted from material recycling, 20-80% from heat and electricity production, and a more modest 0-21% from the production of transport fuel. (Biomass) integrated gasification with combined cycle, hydro-thermal upgrading and waste separation emerge as key technologies from this study, while for example, waste incineration and biomass co-firing in coal power plants do not come out as most attractive options for the longer term. Generally, large-scale conversion units seem favourable to achieve better economies and energy recovery.

  • 5.
    Dornburg, Veronika
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering and Sustainable Development.
    Marland, Gregg
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering and Sustainable Development.
    Temporary storage of carbon in the biosphere does have value for climate change mitigation:: a response to the paper by Miko Kirschbaum2008In: Mitigation and Adaptation Strategies for Global Change, ISSN 1381-2386, Vol. 13, no 3, p. 211-217Article in journal (Other academic)
  • 6.
    Eggers, Thies
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Physics and Mathematics.
    Dornburg, Veronika
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Physics and Mathematics.
    Gustavsson, Leif
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Physics and Mathematics.
    Integrated carbon analysis of biomass production on fallow agricultural land and biomass utilisation2007Conference paper (Refereed)
    Abstract [en]

    An important option in the Swedish context to reduce its net emissions of carbon dioxide (CO2) is the increased use of biomass for energy and material substitution. On fallow agricultural land additional production of biomass would be possible. We analyse biomass production systems based on Norway spruce, hybrid poplar and willow hybrids and the use of this biomass to replace fossil energy and energy intensive material systems. The highest biomass production potential is for willow in southern Sweden. Fertilisation management of spruce could shorten the rotation lengths by about 17%. The fertilised production of Norway spruce in southern Sweden with use of harvested timber for material or construction gives the largest reductions of carbon emissions per hectare in the long term. The use of willow and poplar for heat and power and of fertilised spruce for construction lead to the highest fossil primary energy savings in southern and central Sweden. Short-rotation willow and poplar are a good option when fossil energy savings and carbon emission reductions should be achieved in the short term.

  • 7.
    Gustavsson, Leif
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Physics and Mathematics.
    Holmberg, Jonas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Physics and Mathematics.
    Dornburg, Veronica
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Physics and Mathematics.
    Sathre, Roger
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Physics and Mathematics.
    Eggers, Thies
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Physics and Mathematics.
    Mahapatra, Krushna
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Physics and Mathematics.
    Marland, Gregg
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Physics and Mathematics.
    Using biomass for climate change mitigation and oil use reduction2007In: Energy Policy, ISSN 0301-4215, E-ISSN 1873-6777, Vol. 35, no 11, p. 5671-5691Article in journal (Refereed)
    Abstract [en]

    In this paper, we examine how an increased use of biomass could efficiently meet Swedish energy policy goals of reducing carbon dioxide (CO2) emissions and oil use. In particular, we examine the trade-offs inherent when biomass use is intended to pursue multiple objectives. We set up four scenarios in which up to 400 PJ/year of additional biomass is prioritised to reduce CO2 emissions, reduce oil use, simultaneously reduce both CO2 emission and oil use, or to produce ethanol to replace gasoline. Technologies analysed for using the biomass include the production of electricity, heat, and transport fuels, and also as construction materials and other products. We find that optimising biomass use for a single objective (either CO2 emission reduction or oil use reduction) results in high fulfilment of that single objective (17.4 Tg C/year and 350 PJ oil/year, respectively), at a monetary cost of 130–330 million €/year, but with low fulfilment of the other objective. A careful selection of biomass uses for combined benefits results in reductions of 12.6 Tg C/year and 230 PJ oil/year (72% and 67%, respectively, of the reductions achieved in the scenarios with single objectives), with a monetary benefit of 45 million €/year. Prioritising for ethanol production gives the lowest CO2 emissions reduction, intermediate oil use reduction, and the highest monetary cost.

1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf