miun.sePublications
Change search
Refine search result
1 - 14 of 14
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Jonsson, Peter
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Koptioug, Andrei
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Dual band Fraktal Antenna for RFID Applications2005Conference paper (Refereed)
  • 2.
    Jonsson, Peter
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Koptioug, Andrei
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Using Fractals to Obtain Antennas with High DirectivityManuscript (Other academic)
  • 3.
    Jonsson, Peter
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Koptoiug, Andrei
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Genetically Engineered Dual band Antenna for RFID Applications2005Conference paper (Refereed)
  • 4.
    Jonsson, Peter
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Sidén, Johan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Investigation of antennas for RFID tags on paperbased products2001Report (Other academic)
  • 5.
    Jonsson, Peter
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Sidén, Johan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Olsson, Torbjörn
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Wang, Gang
    High-Directivity Fractal-Vee Dipoles2002In: IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), IEEE conference proceedings, 2002, Vol. 4, p. 558-561Conference paper (Refereed)
  • 6.
    Koptioug, Andrei
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Jonsson, Peter
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Sidén, Johan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Olsson, Torbjörn
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Gulliksson, Mikael
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    On the behavior of printed RFID tag antennas, using conductive paint2003In: Antenn 03. Nordic Antenna Symposium, 13-15 May 2003 , Kalmar, Sweden, 2003, p. 371-374Conference paper (Other academic)
  • 7.
    Nilsson, Hans-Erik
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Koptioug, Andrei
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Gulliksson, Mikael
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Sidén, Johan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Olsson, Torbjörn
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Jonsson, Peter
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Moisture Sensor System2004Patent (Other (popular scientific, debate etc.))
  • 8.
    Nilsson, Hans-Erik
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Sidén, Johan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Olsson, Torbjörn
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Jonsson, Peter
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Koptoiug, Andrei
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Evaluation of a printed patch antenna for robust microwave RFID tags2007In: IET Microwaves, Antennas & Propagation, ISSN 1751-8725, E-ISSN 1751-8733, Vol. 1, no 3, p. 776-781Article in journal (Refereed)
    Abstract [en]

    Antennas in RFID tags have often been designed in a single layer with copper as conductor and plastic foils as substrate. There is currently a large interest in roll to roll production of RFID tags and silver based inks have been developed for use in printed RFID antennas. Silver ink based single layer antennas works well and is providing 70% to 80% of the reading range compared to copper solutions. However, more advanced antennas are needed to provide less sensitivity to the environment of RFID tags .i.e. need for placing tags on metal or near water. In this work we present a study of multilayered antennas so called patch antennas, for 2.45 GHz RFID tags. The advantage of the patch antenna is that it can be applied to any kind of material, reflecting or lossy material, and still provide good antenna function. However, the patch antenna efficiency is strongly dependent on the material used. For low cost RFID tags in logistics there is a need to manufacture the antenna as a part of the packaging process. In the current work we have investigated the possibility to manufacture printed patch antennas of common packaging materials.

  • 9.
    Nilsson, Hans-Erik
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Sidén, Johan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Unander, Tomas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Olsson, Torbjörn
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Jonsson, Peter
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Koptioug, Andrei
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Gulliksson, Mikael
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Characterization of moisture sensor based on printed Carbon-Zinc energy cell2005In: Polytronic 2005: 5th International Conference on Polymers and Adhesives in Microelectronics and Photonics - Proceedings, Piscataway, NJ: IEEE conference proceedings, 2005, p. 82-85, article id 1596492Conference paper (Refereed)
    Abstract [en]

    In this work we present a simple printed moisture sensor fabricated using electronic inks on a multilayer paper structure. The sensor is based on a Carbon-Zinc type energy cell and provides power to a readout electronic circuit when activated by moisture. The sensors are based on a number of our filed patents according to which the sensor is used for both event detection and as a power source for the processing electronics. Typical applications are moisture and leakage detection in buildings, water pipe lines, smart packages and health care systems such as smart incontinence sensors. As the detector is triggered, it powers up an electronic circuit (polymer based or silicon based) that starts communication with the alarm server. In the simplest systems a sound or a light alarm is started to alert the user. In this work we present a characterization of some critical parameters of the sensor such as power driving capability, linearity, internal memory effects and saturation. In addition, we examine a specific application, when sensor is used as defrosting alarm for surveillance of frozen articles during transport.

  • 10.
    Olsson, Torbjörn
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Jonsson, Peter
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Sidén, Johan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Koptioug, Andrei
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Gulliksson, Mikael
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Deformed Bow-tie antenna2003In: Antenn 03. Nordic Antenna Symposium, 13-15 May 2003 , Kalmar, Sweden, 2003, p. 183-188Conference paper (Refereed)
    Abstract [en]

    Antennas in some military applications can be expected to suffer from physical damage of the antenna structure itself. Examples are intelligent munitions when rammed into the gun barrel and vehicle mounted conformal antennas harmed by various types of mechanical impact. Another example is extremely low cost antenna applications. A Radio Frequency IDentification (RFID) system consists of a more or less advanced reader and a very simple tag that can be fastened onto a variety of surfaces. The tag incorporates a transceiver and can carry one or more sensing devices and report findings back to the reader. To keep costs down, low-cost standardized antennas will be used even when the tag is deployed in harsh environments. For the kind of antennas described above, a predictable graceful degradation of performance is appealing. A partial damage of the antenna must not lead to a system breakdown. An essential part of the antenna design must be to ensure robust communication even when the antenna is partially damaged. What performance can be expected from an antenna when part of its structure has been removed? In this paper this issue is examined for a bow-tie antenna when part of its structure has been removed. The structural deformation has been inflicted by removing stripes of the outer part of one of the antenna arms. The investigation was undertaken by simulations in a commercial Finite Integration (FI) program and by verifying measurements.

  • 11.
    Sidén, Johan
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Gao, Jinlan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Unander, Tomas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Jonsson, Peter
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Gulliksson, Mikael
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Electric and Electromagnetic Coupled Sensor Components for Passive RFID2011In: 2011 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems, COMCAS 2011, IEEE conference proceedings, 2011, p. 1-5Conference paper (Refereed)
    Abstract [en]

    This work discuss the possibilities of integrating passive sensor components to passive UHF RFID tags. The sensor system works by degrading a tag's communication performance in proportion to a sensed quantity. Two approaches are studied, sensors directly integrated to tag antenna structures and sensors electromagnetically coupled to tag antennas. The em coupled sensors provide the possibility to produce small sensor components as easily applied add-ons to ordinary commercial RFID tags.

  • 12.
    Sidén, Johan
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Jonsson, Peter
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Koptioug, Andrei
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Physics and Mathematics.
    Printed RFID tag antennas with minimal performance degradation when bent2003In: Proceedings of Asia Pacific Microwave Conference 2003, APMC'03, Seoul, South Korea, November 4-7, 2003., 2003Conference paper (Other academic)
  • 13.
    Sidén, Johan
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Jonsson, Peter
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Olsson, Torbjörn
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Wang, Gang
    Performance Degradation of RFID System due to the Distortion in RFID Tag Antenna2001In: CriMiCo 2001 - 11th International Conference, Institute of Electrical and Electronics Engineers (IEEE), 2001, p. 371-373, article id 1173865Conference paper (Refereed)
    Abstract [en]

    In some of the radio-frequency identification (RFID) applications, RFID tag antennas will be printed onto flexible substrates. Sticked onto different surfaces, geometric distortion of the tag antenna, such as bending of the tag, could occur due to antenna substrate flexibility. In the present paper performance degradation due to such distortion of an RFID system, using the common half-wave dipole antennas usually used in tags, is simulated. It is shown that degradation of RFID system performance in terms of operating range due to such distortion is significant and that antenna structures less sensitive for this deformation should be considered for RFID systems where this kind of effect may occur.

  • 14. Wang, Gang
    et al.
    Sidén, Johan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Jonsson, Peter
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Olsson, Torbjörn
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    RFID antenna investigation at ITM Department Mid Sweden University2002Report (Other academic)
1 - 14 of 14
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf