miun.sePublications
Change search
Refine search result
1 - 21 of 21
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Andersson, Henrik
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Hammarling, Krister
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Sidén, Johan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Manuilskiy, Anatoliy
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Öhlund, Thomas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Modified EAS Tag Used as a Resistive Sensor Platform2012In: MDPI Electronics, ISSN 2079-9292, Vol. 1, no 2, p. 32-46Article in journal (Refereed)
    Abstract [en]

    In this article, a modified design of an RF Radio Frequency Electronic ArticleSurveillance (EAS) tag, used as a sensor platform, is manufactured and characterized. EAStags are passive devices consisting of a capacitor and coil, tuned to a resonance frequencyreadable by the detector equipment, in this case 8.2 MHz. They were originally used todetect whether merchandise was being moved through the detection gates at shop exits, inwhich case an alarm was triggered. If the capacitance is divided in two and a resistivesensor device inserted in between, the resonant Inductor-Capacitor (LC) circuit becomes anInductor-Capacitor-Capacitor-Resistor LCCR circuit and can be used as a sensor tag. Ahigh sensor resistance means that one capacitor is decoupled, leading to one resonancefrequency, while a low resistance will couple both capacitances into the circuit, resulting ina lower resonance frequency. Different types of resistive sensors exist that are able todetect properties such as pressure, moisture, light and temperature. The tag is manufacturedin Aluminum foil on a polyetylentereftalat (PET) substrate, resulting in a cost effectiveRF-platform for various resistive sensors. Two types of tags are designed andmanufactured, one with parallel plate capacitors and the other with interdigital capacitors.To test the tags, a resistive tilt sensor is mounted and the tags are characterized using anetwork analyzer. It is shown that for high resistance, the tags have a resonance frequencyof more than 10 MHz while for low values the frequency approaches 8.2 MHz.

  • 2.
    Andersson, Henrik
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Lidenmark, Cecilia
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Öhlund, Thomas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Örtegren, Jonas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Manuilskiy, Anatoliy
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Forsberg, Sven
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Evaluation of coatings applied to flexible substrates to enhance quality of ink jet printed silver nano-particle structures2012In: IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part C, ISSN 1083-4400, E-ISSN 1558-1241, Vol. 2, no 2, p. 342-348Article in journal (Refereed)
    Abstract [en]

    Different types of the commercial surface treatment InkAid have been evaluated as a surface treatment to enhance print quality of silver nano-particle ink structures printed on polyimide and polyethene substrate. Originally these coatings have been specified to be applied on substrates for graphical ink jet printing. On the coated polyimide and polyethene substrates lines of different widths have been printed using a Dimatix materials printer together with silver nano-particle ink manufactured by Advanced Nano Products. The prints have then been evaluated in terms of print quality and resistivity before and after sintering. The results show that the application of these coatings can improve the print quality considerably, making it possible to print lines with a good definition, which is not  otherwise possible with this type of ink on this substrate types. It has been found that the coating Semi Gloss provides the best results, both in terms of print quality as well as the lowest resistivity. The resistivity on polyethene is 3.5*10-7Ωm at best when sintered at 150°C and for polyimide  8.9*10-8Ωm sintered at 200°C. This corresponds to a conductivity of about  4.5% and  18%of bulk silver, respectively. It can be concluded that applying such PVP based coatings to polyethene and polyimide will increase the print quality quite substantially, making it possible to print patterns with requirements of smaller line widths and more details than what is possible without coating.

  • 3.
    Andersson, Henrik
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Manuilskiy, Anatoliy
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Lidenmark, Cecilia
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Gao, Jinlan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Öhlund, Thomas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Forsberg, Sven
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Örtegren, Jonas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Schmidt, Wolfgang
    Schoeller Technocell GmbH and Co. KG, Burg Gretesch, D-49086, Osnabrück, Germany.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    The influence of paper coating content on room temperature sintering of silver nanoparticle ink2013In: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 24, no 45, p. Art. no. 455203-Article in journal (Refereed)
    Abstract [en]

    The resistance of inkjet printed lines using a silver nanoparticle based ink can be very dependent on the substrate. A very large difference in resistivity was observed for tracks printed on paper substrates with aluminum oxide based coatings compared to silica based coatings. Silica based coatings are often cationized with polymers using chloride as a counter ion. It is suggested that the precipitation of silver salts is the cause of the high resistivity, since papers pretreated with salt solutions containing ions that precipitate silver salts gave a high resistance. Silver nitrate has a high solubility and paper pretreated with nitrate ions gave a low resistivity without sintering. The results obtained show that, by choosing the correct type of paper substrate, it is possible to manufacture printed structures, such as interconnects on paper, without the need for, or at least to reduce the need for, post-print sintering. This phenomenon is, of course, ink specific. Inks without or with a low silver ion content are not expected to behave in this manner. In some sensor applications, a high resistivity is desired and, by using the correct combination of ink and paper, these types of sensors can be facilitated.

  • 4.
    Andersson, Henrik
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Öhlund, Thomas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Manuilskiy, Anatoliy
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Forsberg, Sven
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences, Engineering and Mathematics.
    Örtegren, Jonas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Evaluation of InkAid surface treatment to enhance print quality of ANP silver nano-particle ink on plastic substrates2010In: Large Area, Organic & Printed Electronics (LOPE-C) 2010, Frankfurt, 2010, p. 241-245Conference paper (Refereed)
  • 5.
    Balliu, Enkeleda
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Engholm, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Öhlund, Thomas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Selective laser sintering of inkjet-printed silver nanoparticle inks on paper substrates to achieve highly conductive patterns2018In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 8, no 1, article id 10408Article in journal (Refereed)
    Abstract [en]

    Development of cost-effective and environmentally friendly manufacturing methods will enable important advances for the production of large-scale flexible electronics. Laser processing has shown to be a promising candidate that offers a fast and non-destructive way to produce highly conductive patterns on flexible substrates such as plastics. However, an emerging option with a lower environmental impact is instead the use of cellulose-based flexible substrates, such as paper. In this work we investigate the use of laser sintering of silver nanoparticle inks, which were inkjet-printed on three different types of paper. Patterns with a high conductivity could be manufactured where a special care was taken to prevent the substrates from damage by the intense laser light. We found that the best results was obtained for a photopaper, with a conductivity of 1.63 107 S/m corresponding to nearly 26% of the bulk silver conductivity. In addition, we demonstrate laser sintering to fabricate a fully functional near field communication tag printed on a photopaper. Our results can have an important bearing for the development of cost-effective and environmentally friendly production methods for flexible electronics on a large scale. 

  • 6.
    Barhoum, Ahmed
    et al.
    Vrije Universiteit Brussel (VUB), Belgium.
    Samyn, Pieter
    Hasselt University, Belgium.
    Öhlund, Thomas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Dufresne, Alain
    Univ. Grenoble Alpes, France.
    Review of recent research on flexible multifunctional nanopapers2017In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 9, no 40, p. 15181-15205Article in journal (Refereed)
    Abstract [en]

    Traditional paper and papermaking have struggled with a declining market during the last decades. However, the incorporation of nanotechnology in papermaking has brought possibilities to develop low-cost, biocompatible and flexible products with sophisticated functionalities. The functionality of nanopapers emerges from the intrinsic properties of the nanofibrous network, the additional loading of specific nanomaterials, or the additional deposition and patterning of thin films of nanomaterials on the paper surface. A successful development of functional nanopapers requires understanding in how the nanopaper matrix, nanomaterial fillers, coating pigments/inks, functional additives and manufacturing processes all interact to provide the intended functionality. This review addresses the emerging area of functional nanopapers. The review discusses flexible and multifunctional nanopapers, nanomaterials being used in nanopaper making, manufacturing techniques, and functional applications that provide new important possibilities to utilize papermaking technology. The interface where nanomaterials research meets traditional papermaking has important implications for food packaging, energy harvesting, and energy storage, flexible electronics, low-cost devices for medical diagnostics, and numerous other areas.

  • 7.
    Molina-Lopez, F.
    et al.
    Stanford University, Stanford, CA United States; KU Leuven, Leuven, Belgium.
    Gao, T. Z.
    Stanford University, Stanford, CA United States.
    Kraft, U.
    Stanford University, Stanford, CA United States; University of Cambridge, Cambridge, United Kingdom.
    Zhu, C.
    Stanford University, Stanford, CA United States.
    Öhlund, Thomas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences. Stanford University, Stanford, CA United States.
    Pfattner, R.
    Stanford University, Stanford, CA United States; Institute of Materials Science of Barcelona (ICMAB-CISC), Bellaterra, Spain.
    Feig, V. R.
    Stanford University, Stanford, CA United States.
    Kim, Y.
    Stanford University, Stanford, CA United States.
    Wang, S.
    Stanford University, Stanford, CA United States; University of Chicago, Chicago, IL United States.
    Yun, Y.
    Samsung Advanced Institute of Technology, Suwon, South Korea.
    Bao, Z.
    Stanford University, Stanford, CA United States.
    Inkjet-printed stretchable and low voltage synaptic transistor array2019In: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 10, no 1, article id 2676Article in journal (Refereed)
    Abstract [en]

    Wearable and skin electronics benefit from mechanically soft and stretchable materials to conform to curved and dynamic surfaces, thereby enabling seamless integration with the human body. However, such materials are challenging to process using traditional microelectronics techniques. Here, stretchable transistor arrays are patterned exclusively from solution by inkjet printing of polymers and carbon nanotubes. The additive, non-contact and maskless nature of inkjet printing provides a simple, inexpensive and scalable route for stacking and patterning these chemically-sensitive materials over large areas. The transistors, which are stable at ambient conditions, display mobilities as high as 30 cm2 V−1 s−1 and currents per channel width of 0.2 mA cm−1 at operation voltages as low as 1 V, owing to the ionic character of their printed gate dielectric. Furthermore, these transistors with double-layer capacitive dielectric can mimic the synaptic behavior of neurons, making them interesting for conformal brain-machine interfaces and other wearable bioelectronics. 

  • 8.
    Samyn, Pieter
    et al.
    Hasselt University, Diepenbeek, Belgium.
    Barhoum, Ahmed
    Vrije Universiteit Brussel (VUB), Brussels, Belgium; Helwan University, Cairo, Egypt.
    Öhlund, Thomas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Dufresne, Alain
    Université Grenoble Alpes, Grenoble, France.
    Review: Nanoparticles and Nanostructured Materials in Papermaking2018In: Journal of Materials Science, ISSN 0022-2461, E-ISSN 1573-4803, Vol. 53, no 1, p. 146-184Article in journal (Refereed)
    Abstract [en]

    The introduction of nanoparticles (NPs) and nanostructured materials (NSMs) in papermaking originally emerged from the perspective of improving processing operations and reducing material consumption. However, a very broad range of nanomaterials (NMs) can be incorporated into the paper structure and allows creating paper products with novel properties. This review is of interdisciplinary nature, addressing the emerging area of nanotechnology in papermaking focusing on resources, chemical synthesis and processing, colloidal properties, and deposition methods. An overview of different NMs used in papermaking together with their intrinsic properties and a link to possible applications is presented from a chemical point of view. After a brief introduction on NMs classification and papermaking, their role as additives or pigments in the paper structure is described. The different compositions and morphologies of NMs and NSMs are included, based on wood components, inorganic, organic, carbon-based, and composite NPs. In a first approach, nanopaper substrates are made from fibrillary NPs, including cellulose-based or carbon-based NMs. In a second approach, the NPs can be added to a regular wood pulp as nanofillers or used in coating compositions as nanopigments. The most important processing steps for NMs in papermaking are illustrated including the internal filling of fiber lumen, LbL deposition or fiber wall modification, with important advances in the field on the in situ deposition of NPs on the paper fibers. Usually, the manufacture of products with advanced functionality is associated with complex processes and hazardous materials. A key to success is in understanding how the NMs, cellulose matrix, functional additives, and processes all interact to provide the intended paper functionality while reducing materials waste and keeping the processes simple and energy efficient.

  • 9.
    Zhang, Renyun
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Andersson, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Andres, Britta
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Edlund, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Edström, Per
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Edvardsson, Sverker
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Forsberg, Sven
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Hummelgård, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Johansson, Niklas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Karlsson, Kristoffer
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Norgren, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Olsen, Martin
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Uesaka, Tetsu
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Öhlund, Thomas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Soap-film coating: High-speed deposition of multilayer nanofilms2013In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 3, p. Art. no. 1477-Article in journal (Refereed)
    Abstract [en]

    The coating of thin films is applied in numerous fields and many methods are employed for the deposition of these films. Some coating techniques may deposit films at high speed; for example, ordinary printing paper is coated with micrometre-thick layers of clay at a speed of tens of meters per second. However, to coat nanometre thin films at high speed, vacuum techniques are typically required, which increases the complexity of the process. Here, we report a simple wet chemical method for the high-speed coating of films with thicknesses at the nanometre level. This soap-film coating technique is based on forcing a substrate through a soap film that contains nanomaterials. Molecules and nanomaterials can be deposited at a thickness ranging from less than a monolayer to several layers at speeds up to meters per second. We believe that the soap-film coating method is potentially important for industrial-scale nanotechnology.

  • 10.
    Zhang, Renyun
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Andersson, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Andres, Britta
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Edström, Per
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Edvardsson, Sverker
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Forsberg, Sven
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Hummelgård, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Johansson, Niklas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Kalsson, Kristoffer
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Olsen, Martin
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Öhlund, Thomas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    High-speed deposition of multilayer nanofilms using soap-film coating2013Conference paper (Refereed)
    Abstract [en]

    High-speed deposition of multilayer nanofilms using soap-film coating

    Renyun Zhang, Henrik A. Andersson, Mattias Andersson, Britta Andres, Per Edström, Sverker Edvardsson, Sven Forsberg, Magnus Hummelgård, Niklas Johansson, Kristoffer Karlsson, Hans-Erik Nilsson, Martin Olsen, Tetsu Uesaka, Thomas Öhlund & Håkan Olin

    Department of Applied Science and Design, Mid Sweden University, SE-85170 Sundsvall, Sweden

    Email: renyun.zhang@miun.se or hakan.olin@miun.se

    Coating1 of thin films is of importance for making functionalized surfaces with applications in many fields from electronics to consumer packaging. To decrease the cost, large scale roll-to-roll2 coating techniques are usually done at high speed, for example, ordinary printing paper is coated at a speed of tens of meters per second by depositing micrometer thick layers of clay. However, nanometer thin films are harder to coat at high speed by wet-chemical methods, requiring special roll-to-roll vacuum techniques3 with the cost of higher complexity.

    Here, we report a simple wet chemical method for high-speed coating of films down to molecular thicknesses, called soap-film coating (SFC)4. The technique is based on forcing a substrate through a soap film that contains nanomaterials. In the simplest laboratory version, the films can be deposited by a hand-coating procedure set up in a couple of minutes. The method is quite general molecules or nanomaterials or sub-micrometer materials (Figure 1) with thicknesses ranging from less than a monolayer to several layers at speeds up to meters per second. The applications of soap-film coating is quite wide an we will show solar cells, electrochromic devices, optical nanoparticle crystals, and nano-film devices. We believe that the soap-film coating method is potentially important for industrial-scale nanotechnology.

    Fig. 1. Soap film coating of nanoparticles, layered materials, nanowires, and molecules. a sub-monolayer 240 nm silica nanoparticle (scale bar 2 µm) b monolayer c double layer. d monolayer gold nanoparticles. e single layer TiO2 nanoparticles. f sub-monolayer polystyrene (scale 2 µm), g monolayer of polystyrene. h triple-layer of polystyrene. i monolayer of Ferritin.  j AFM image of <1.5 layer GO film (3 µm x 2 µm). k clay on glass (scale 2 µm). l SFC coated nanocellulose. m Absorbance spectra Rhodamine B on a glass slide. AFM of SDS layers n (2 µm x 1.5 µm) and o (20 µm x 15 µm).

    References

    1. Tracton, A. A. Coating Technology Handbook (CRC Press, Boca Raton, 2006).

    2. Ohring, M. Materials science of thin films. (Academic press., 2001).

    3. Charles, B. Vacuum deposition onto webs, films and foils. (William Andrew, 2011).

    Zhang, R. Y., Andersson, H. A., Andersson, M., Andres, B., Edström, P., Edvardsson, S., Forsberg, S., Hummelgård, M., Johansson, N., Karlsson, K., Nilsson, H.-E., Olsen, M., Uesaka, T., Öhlund, T., Olin H. Soap film coating: High-speed deposition of multilayer nanofilms. Submitted.

  • 11.
    Zhang, Renyun
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Hummelgård, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Forsberg, Viviane
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Engholm, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Öhlund, Thomas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Olsen, Martin
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Örtegren, Jonas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Photoconductivity of acid exfoliated and flash-light-processed MoS2 films2018In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 8, article id 3296Article in journal (Refereed)
    Abstract [en]

    MoS2 has been studied intensively during recent years as a semiconducting material in several fields, including optoelectronics, for applications such as solar cells and phototransistors. The photoresponse mechanisms of MoS2 have been discussed but are not fully understood, especially the phenomenon in which the photocurrent slowly increases. Here, we report on a study of the photoresponse flash-light-processed MoS2 films of different thicknesses and areas. The photoresponse of such films under different light intensities and bias voltages was measured, showing significant current changes with a quick response followed by a slow one upon exposure to pulsed light. Our in-depth study suggested that the slow response was due to the photothermal effect that heats the MoS2; this hypothesis was supported by the resistivity change at different temperatures. The results obtained from MoS2 films with various thicknesses indicated that the minority-carrier diffusion length was 1.36 mu m. This study explained the mechanism of the slow response of the MoS2 film and determined the effective thickness of MoS2 for a photoresponse to occur. The method used here for fabricating MoS2 films could be used for fabricating optoelectronic devices due to its simplicity.

  • 12.
    Öhlund, Thomas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Coated Surfaces for Inkjet-Printed Conductors2012Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    In this thesis, a number of commercially available paper substrates of various types are characterized and their characteristics related to the performance of inkjet-printed conductors using silver nanoparticle ink. The evaluated performance variables are electrical conductivity as well as the minimum achievable conductor width and the edge raggedness. It is shown that quick absorption of the ink carrier is beneficial for achieving well defined conductor geometry and high conductivity. Surface roughness with topography variations of sufficiently large amplitude and frequency is detrimental to print definition and conductivity. Porosity is another important factor, where the characteristic pore size is much more important than the total pore volume. A nearly ideal porous coating has large total pore volume but small characteristic pore size, preferably smaller than individual nanoparticles in the ink. Apparent surface energy is important for non-absorbing substrates but of limited importance for coatings with a high absorption rate.Additionally, a concept for improving the geometric definition of inkjet-printed conductors on nonporous films has been demonstrated. By coating the films with polymer–based coatings to provide a means of ink solvent removal, minimum conductor width were reduced a factor 2 or more.Intimately connected to the end performance of printed conductors is a well adapted sintering methodology. A comparative evaluation of a number of selective sintering methods has been performed on paper substrates with different heat tolerance. Pulsed high-power white light was found to be a good compromise between conductivity performance, reliability and production adaptability.The purpose of the work conducted in this thesis is to increase the knowledge base in how surface characteristics of papers and flexible films affect performance of printed nanoparticle structures. This would improve selection, adaption of, or manufacturing of such substrates to suit printed high conductivity patterns such as printed antennas for packaging.

  • 13.
    Öhlund, Thomas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Metal Films for Printed Electronics: Ink-substrate Interactions and Sintering2014Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    A new manufacturing paradigm may lower the cost and environmental impact of existing products, as well as enable completely new products. Large scale, roll-to-roll manufacturing of flexible electronics and other functionality has great potential. However, a commercial breakthrough depends on a lower consumption of materials and energy compared with competing alternatives, and that sufficiently high performance and reliability of the products can be maintained. The substrate constitutes a large part of the product, and therefore its cost and environmental sustainability are important. Electrically conducting thin films are required in many functional devices and applications. In demanding applications, metal films offer the highest conductivity.

     

    In this thesis, paper substrates of various type and construction were characterized, and the characteristics were related to the performance of inkjet-printed metal patterns. Fast absorption of the ink carrier was beneficial for well-defined pattern geometry, as well as high conductivity. Surface roughness with topography variations of sufficiently large amplitude and frequency, was detrimental to the pattern definition and conductivity. Porosity was another important factor, where the characteristic pore size was much more important than the total pore volume. Apparent surface energy was important for non-absorbing substrates, but of limited importance for coatings with a high absorption rate. Applying thin polymer–based coatings on flexible non-porous films to provide a mechanism for ink solvent removal, improved the pattern definition significantly. Inkjet-printing of a ZnO-dispersion on uncoated paper provided a thin spot-coating, allowing conductivity of silver nanoparticle films. Conductive nanoparticle films could not form directly on the uncoated paper.

     

    The resulting performance of printed metal patterns was highly dependent on a well adapted sintering methodology. Several sintering methods were examined in this thesis, including conventional oven sintering, electrical sintering, microwave sintering, chemical sintering and intense pulsed light sintering. Specially designed coated papers with modified chemical and physical properties, were utilized for chemical low-temperature sintering of silver nanoparticle inks. For intense pulsed light sintering and material conversion of patterns, custom equipment was designed and built. Using the equipment, inkjet-printed copper oxide patterns were processed into highly conducting copper patterns. Custom-designed papers with mesoporous coatings and porous precoatings improved the reliablility and performance of the reduction and sintering process.

     

     

     

     

    The thesis aims to clarify how ink-substrate interactions and sintering methodology affect the performance and reliability of inkjet-printed nanoparticle patterns on flexible substrates. This improves the selection, adaptation, design and manufacturing of suitable substrates for inkjet-printed high conductivity patterns, such as circuit boards or RFID antennas.  

  • 14.
    Öhlund, Thomas
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Andersson, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Effect of Paper Properties on Electrical Conductivity and Pattern Definition for Silver Nanoparticle Inkjet Ink2012In: Proceedings of LOPE-C 2012, 2012, p. 115-119Conference paper (Refereed)
    Abstract [en]

    In this work, electrical conductivity and print pattern definition isstudied for silver nanoparticle ink, printed on ten commerciallyavailable paper substrates. Interrelations and correlations betweenelectrical conductivity, print pattern definition and a set ofmeasured paper properties are analyzed with a multivariatestatistical method. The papers are characterized in terms ofabsorption rate, porosity, apparent surface energy, surfaceroughness and surface material content. The statistical analysisshows that electrical conductivity and print pattern definition arecorrelated. Conductivity and print definition are correlatedpositively with absorption rate and negatively with surfaceroughness. A model based on projection to latent structures (PLS) isbuilt from the measurement data, showing adequate values of modelfit and predictive ability. This suggests that the chosen propertiesand methods for surface characterization are relevant in estimatingoverall performance of inkjet-printed conductors on paper.Additionally, a qualitative examination of the nanoparticle layercharacteristic is conducted with SEM cross section microscopy.Some of the properties and mechanisms of importance to theconductivity of the printed conductors are highlighted, of whichsome are crucial for achieving conductivity. Physical characteristicsof a suitable paper surface should ideally include large absorptioncapability for the ink carrier, but most importantly, a characteristicpore size and surface roughness amplitude that are both smallcompared to the dry ink layer thickness. If these criteria are met,paper media can be a low cost, comparably high performancealternative for metal nanoparticle inks in printed electronics applications.

  • 15.
    Öhlund, Thomas
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Hummelgård, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Sintering Inhibition of Silver Nanoparticle Films via AgCl Nanocrystal Formation2017In: Nanomaterials, ISSN 2079-4991, Vol. 7, no 8, article id 224Article in journal (Refereed)
    Abstract [en]

    Electrically conductive films are key components in most printed and flexible electronics applications. For the solution processing of conductive films, inks containing silver nanoparticles (AgNPs) remain important because of their relatively easy processing and generally low resistivity after a sintering procedure. Because the commonly used, moderate sintering temperatures of 150-300 °C are still too high for most low-cost flexible substrates, expanding the knowledge of surface-ink interactions that affect the sintering temperature is desirable. It is known that chloride ions can assist the sintering of AgNP films by displacing capping agents on the surfaces of AgNPs. However, very little is known about other possible Cl-AgNP interactions that affect the resistivity and no interaction having the opposite effect (sintering inhibition) has been identified before. Here we identify such a Cl-AgNP interaction giving sintering inhibition and find that the mechanism involves the formation of AgCl nanocrystals within the AgNP film. The AgCl formation was observed after inkjet-printing of AgNP inks with polyvinylpyrrolidone (PVP) as the capping agent onto papers with quick-absorbing coatings containing 0.3 wt % KCl. Our findings show that chloride can have opposite roles during sintering, either assisting or inhibiting the sintering depending on the prevalence of AgCl formation. The prevalence of AgCl formation depends on the absorption properties and the capping agent.

  • 16.
    Öhlund, Thomas
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Schuppert, Anna
    Schoeller Technocell GmbH & Co KG, D-49086 Osnabruck, Germany.
    Andres, Britta
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Forsberg, Sven
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Schmidt, Wolfgang
    Schoeller Technocell GmbH & Co KG, D-49086 Osnabruck, Germany.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Andersson, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Zhang, Renyun
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Assisted sintering of silver nanoparticle inkjet inks on paper with active coatings2015In: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 5, p. 64841-64849Article in journal (Refereed)
    Abstract [en]

    Inkjet-printed metal films are important within the emerging field of printed electronics. For large-scale manufacturing, low-cost flexible substrates and low temperature sintering is desired. Tailored coated substrates are interesting for roll-to-roll fabrication of printed electronics, since a suitable tailoring of the ink-substrate system may reduce, or remove, the need for explicit sintering. Here we utilize specially designed coated papers, containing chloride as an active sintering agent. The built-in sintering agent greatly assists low-temperature sintering of inkjet-printed AgNP films. Further, we examine the effect of variations in coating pore size and precoating type. Interestingly, we find that the sintering is substantially affected by these parameters.

  • 17.
    Öhlund, Thomas
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Schuppert, Anna
    Institut Charles Gerhardt de Montpellier, France.
    Hummelgård, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Bäckström, Joakim
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Inkjet Fabrication of Copper Patterns for Flexible Electronics: Using Paper with Active Precoatings2015In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 7, no 33, p. 18273-18282Article in journal (Refereed)
    Abstract [en]

    Low-cost solution-processing of highly conductive films is important for the expanding market of printed electronics. For roll-to-roll manufacturing, suitable flexible substrates and compatible postprocessing are essential. Here, custom-developed coated papers are demonstrated to facilitate the inkjet fabrication of high performance copper patterns. The patterns are fabricated in ambient conditions using water-based CuO dispersion and intense pulsed light (IPL) processing. Papers using a porous CaCO3 precoating, combined with an acidic mesoporous absorption coating, improve the effectiveness and reliability of the IPL process. The processing is realizable within 5 ms, using a single pulse of light. A resistivity of 3.1 ± 0.12 μΩ·cm is achieved with 400 μm wide conductors, corresponding to more than 50% of the conductivity of bulk copper. This is higher than previously reported results for IPL-processed copper.

  • 18.
    Öhlund, Thomas
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Örtegren, Jonas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Sintering Methods for Metal Nanoparticle Inks on Flexible Substrates2009In: NIP 25: DIGITAL FABRICATION 2009, TECHNICAL PROGRAM AND PROCEEDINGS, The Society for Imaging Science and Technology, 2009, p. 614-617Conference paper (Refereed)
    Abstract [en]

    In this paper a number of selective sintering methods suitable for inkjet printed nanoparticles are demonstrated on two different coated papers. The selective methods demonstrated here are electric current heating, microwave sintering and photonic curing. As a reference, conventional heat chamber sintering is also included. Conductivity measurements and studies of sintered structures with optical and scanning electron microscopy are performed, as well as a qualitative evaluation of how the heat-sensitive substrates are affected. The purpose is to analyze characteristics of each method and gain insight in how different process parameters affect overall performance and reliability. With heat chamber sintering the best achievable conductivity without substrate deformation corresponded to less than 20% of pure silver. With some selective methods, conductivity reached well above 50% of pure silver.

     

     

  • 19.
    Öhlund, Thomas
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Örtegren, Jonas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    The importance of surface characteristics for structure definition of silver nanoparticle ink patterns on paper surfaces2010In: NIP26 and Digital Fabrication, Austin: The Society for Imaging Science and Technology, 2010, p. 309-313Conference paper (Refereed)
  • 20.
    Öhlund, Thomas
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Örtegren, Jonas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Forsberg, Sven
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Paper Surfaces for Metal Nanoparticle Inkjet Printing2012In: Applied Surface Science, ISSN 0169-4332, E-ISSN 1873-5584, Vol. 259, p. 731-739Article in journal (Refereed)
    Abstract [en]

    The widespread usage of paper and board offer largely unexploited possibilities for printed electronics applications. Reliability and performance of printed devices on comparatively rough and inhomogenous surfaces of paper does however pose challenges.Silver nanoparticle ink has been deposited on ten various paper substrates by inkjet printing. The papers are commercially available, and selected over a range of different types and construction. A smooth nonporous polyimide film was included as a nonporous reference substrate. The substrates have been characterized in terms of porosity, absorption rate, apparent surface energy, surface roughness and material content. The electrical conductivity of the resulting printed films have been measured after drying at 60°C and again after additional sintering at 110°C. A qualitative analysis of the conductivity differences on the different substrates based on surface characterization and SEM examination is presented. Measurable parameters of importance to the final conductivity are pointed out, some of which are crucial to achieve conductivity. When certain criteria of the surfaces are met, paper media can be used as low cost, but comparably high performance substrates for metal nanoparticle inks in printed electronics applications.

  • 21.
    Örtegren, Jonas
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Öhlund, Thomas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Niga, Petru
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Makeen, Khalid
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Print quality issues concerning inkjet printing of colour and electronics on paper2012In: PTS Symposium: Paper and Imaging 2012, Munich, Germany, 2012, p. 251-263Conference paper (Other academic)
    Abstract [en]

    The market value of the digital printing technologies electrophotography and inkjet is expected to grow during this decade. The introduction of multicolour high speed inkjet machines in recent years has again turned print quality into an important issue. In addition, the combination of digital printing and traditional printing technologies for variable data print production requires paper and ink which gives good and comparable print quality using different printing technologies. Printed electronics, most commonly utilizing the printing technologies screen, gravure, flexography or inkjet, is forecasted a bright future. The interest in paper as print media for printed electronics and flexible electronics has recently increased, mainly due to the widespread usage of paper, the low cost of paper, and due to the fact that paper is produced mainly from natural renewable resources. The requirements on the print concern here not primarily the visual impression, but rather the functionality, for example the conductivity of printed tracks.

    We have studied the effect of surface treatment of paper on inkjet print quality; we have looked more closely at the effect of different paper surface parameters, and shown that these parameters can have a large impact on both chroma and detail reproduction when printing with pigmented inkjet inks. Combination of inkjet with traditional printing technologies can give good print quality when carefully combining printing technology, ink and print media. Moreover, some knowledge concerning printing of colour may be transferred to the field of printed electronics, although the prerequisites on the print products are quite different. We have studied how the surface properties of coated paper affects the electrical conductivity and the print quality of inkjet printed electronics. In addition, coating of paper surfaces by laboratory methods and evaluation of functionality has been performed. The work is a base for our ongoing research on adding of functionalities to paper and packaging in a flexible and cost efficient way by utilization of printing technologies and novel materials.

1 - 21 of 21
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf