miun.sePublications
Change search
Refine search result
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Gustafsson Coppel, Ludovic
    et al.
    Gjovik Univ Coll, Fac Comp Sci & Media Technol, N-2815 Gjovik, Norway.
    Johansson, Niklas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Neuman, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Angular dependence of fluorescence from turbid media2015In: Optics Express, ISSN 1094-4087, E-ISSN 1094-4087, Vol. 23, no 15, p. 19552-19564Article in journal (Refereed)
    Abstract [en]

    We perform Monte Carlo light scattering simulations to study the angular distribution of the fluorescence emission from turbid media and compare the results to measured angular distributions from fluorescing white paper samples. The angular distribution of fluorescence emission is significantly depending on the concentration of fluorophores. The simulations show also a dependence on the angle of incidence that is however not as evident in the measurements. A detailed analysis of the factors affecting this angular distribution indicates that it is strongly correlated to the mean depth of the fluorescence process. The findings can find applications in fluorescence spectroscopy and are of particular interest when optimizing the impact of fluorescence on e.g.the appearance of paper as the measured values are angle dependent.

  • 2.
    Johansson, Niklas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Measuring and modelling light scattering in paper2015Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis is about measuring and modelling light reflected from paper by using goniophotometric measurements. Measuring bidirectional reflectance requires highly accurate instruments, and a large part of the work in this thesis is about establishing the requirements that must be fulfilled to ensure valid data. A spectral goniophotometer is used for measuring the light reflected from paper and methods are developed for analyzing the different components, i.e. the fluorescence, surface reflectance and bulk reflectance, separately. A separation of the surface and bulk reflectance is obtained by inkjet printing and analyzing the total reflectance in the absorption band of the ink. The main principle of the method is to add dye to the paper until the bulk scattered light is completely absorbed. The remaining reflectance is solely surface reflectance, which is subtracted from the total reflectance of the undyed sample to give the bulk reflectance. The results show that although the surface reflectance of a matte paper is small in comparison with the bulk reflectance, it grows rapidly with increasing viewing angle, and can have a large influence on the overall reflectance.

    A method for quantitative fluorescence measurements is developed, and used for analyzing the angular distribution of the fluoresced light. The long-standing issue whether fluorescence from turbid (or amorphous) media is Lambertian or not, is resolved by using both angle-resolved luminescence measurements and radiative transfer based Monte Carlo simulations. It is concluded that the degree of anisotropy of the fluoresced light is related to the average depth of emission, which in turn depends on factors such as concentration of fluorophores, angle of incident light and the absorption coefficient at the excitation wavelength.

    All measurements are conducted with a commercially available benchtop sized double-beam spectral goniophotometer designed for laboratory use. To obtain reliable results, its absolute measurement capability is evaluated in terms of measurement accuracy. The results show that the compact size of the instrument, combined with the anisotropic nature of reflectance from paper, can introduce significant systematic errors of the same order as the overall measurement uncertainty. The errors are related to the relatively large detection solid angle that is required when measuring diffusely reflecting materials. Situations where the errors are most severe, oblique viewing angles and samples with high degree of anisotropic scattering, are identified, and a geometrical correction is developed.

    Estimating optical properties of a material from bidirectional measurements has proved to be a challenging problem and the outcome is highly dependent on both the quality and quantity of the measurements. This problem is analyzed in detail for optically thick turbid media, and the study targets the case when a restricted set of detection angles are available. This is the case when e.g. an unobstructed view of the sample is not possible. Simulations show that the measurements can be restricted to the plane of incidence (in-plane), and even the forward direction only, without any significant reduction in the precision or stability of the estimation, as long as sufficiently oblique angles are included.

  • 3.
    Johansson, Niklas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Spectral goniophotometry: applications to light scattering in paper2013Licentiate thesis, comprehensive summary (Other academic)
  • 4.
    Johansson, Niklas
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Andersson, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Angular variations of reflectance and fluorescence from paper - the influence of fluorescent whitening agents and fillers2012In: Final Program and Proceedings - IS and T/SID Color Imaging Conference, Springfield, USA: The Society for Imaging Science and Technology, 2012, p. 236-241Conference paper (Refereed)
    Abstract [en]

    It has earlier been shown that light reflected from the bodyof paper exhibit anisotropic behavior. On the other hand, fluores-cence emission is often assumed to be distributed in a Lambertianmanner. The angular behavior of light reflected and fluorescedfrom paper is examined using measurements from a spectral go-niophotometer. The angular dependency of the radiance factorswas measured for a range of excitation wavelengths. Moreover,the influence of fillers and fluorescent whitening agents (FWA)on the anisotropy was studied. The measurements show that theanisotropy of the total radiance factor of paper decreases whenan increasing amount of FWA is added to the paper. The sameeffect was also observed when an increased amount of filler wasadded to the paper. In addition, it was shown that the presenceof fillers reduce the effect of the FWA. The results show that incomparison to the anisotropy of the total radiance factor from thepaper samples, the anisotropy of the fluorescence alone is negligi-ble. Hence, for paper samples containing FWA evenly distributedin the bulk, the fluorescence alone should not induce significantdifferences between color measuring instruments of different mea-surement geometries.

  • 5.
    Johansson, Niklas
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Neuman, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Andersson, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Edström, Per
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Influence of finite-sized detection solid angle on bidirectional reflectance distribution function measurements2014In: Applied Optics, ISSN 1559-128X, E-ISSN 2155-3165, Vol. 53, no 6, p. 1212-1220Article in journal (Refereed)
    Abstract [en]

    This paper deals with limitations and often overlooked sources of error introduced in compact double-beam goniophotometers. It is shown that relative errors in measured radiance factor, comparable to the total measurement uncertainty, can be introduced if recommended corrections are not carried out. Two different error sources are investigated, both related to the size of the detection solid angle. The first is a geometrical error that occurs when the size of the illuminated area and detector aperture are comparable to the distance between them. The second is a convolution error due to variations in radiant flux over the detector aperture, which is quantified by simulating the full 3D bidirectional reflectance distribution function (BRDF) of a set of samples with different degrees of anisotropic reflectance. The evaluation is performed for a compact double-beam goniophotometer using different detection solid angles, and it is shown that both error sources introduce relative errors of 1%–3%, depending on viewing angle and optical properties of the sample. Commercially available compact goniophotometers, capable of absolute measurements, are becoming more and more common, and the findings in this paper are therefore important for anyone using or planning to use this type of instrument.

  • 6.
    Johansson, Niklas
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Neuman, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Andersson, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Edström, Per
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Separation of surface and bulk reflectance by absorption of bulk scattered light2013In: Applied Optics, ISSN 1559-128X, E-ISSN 2155-3165, Vol. 52, no 19, p. 4749-4754Article in journal (Refereed)
    Abstract [en]

    A method is proposed for separating light reflected from turbid media with a rough surface into a bulkand a surface component. Dye is added to the sample, thereby increasing absorption and canceling bulkscattering. The remaining reflected light is surface reflectance, which can be subtracted from the totalreflectance of an undyed sample to obtain the bulk component. The method is applied to paper wherethe addition of dye is accomplished by inkjet printing. The results show that the bulk scattered light isefficiently canceled, and that both the spectrally neutral surface reflectance and the surface topographyof the undyed paper is maintained. The proposed method is particularly suitable for characterization ofdielectric, highly randomized materials with significant bulk reflectance and rough surfaces, which aredifficult to analyze with existing methods. A reliable separation method opens up for new ways of analyzing,e.g., biological tissues and optical coatings, and is also a valuable tool in the development of morecomprehensive reflectance models.

  • 7.
    Johansson, Niklas
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Neuman, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Andersson, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Edström, Per
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    The inverse radiative transfer problem - considerations for optically thick mediaArticle in journal (Refereed)
  • 8.
    Zhang, Renyun
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Andersson, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Andres, Britta
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Edlund, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Edström, Per
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Edvardsson, Sverker
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Forsberg, Sven
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Hummelgård, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Johansson, Niklas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Karlsson, Kristoffer
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Norgren, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Olsen, Martin
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Uesaka, Tetsu
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Öhlund, Thomas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Soap-film coating: High-speed deposition of multilayer nanofilms2013In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 3, p. Art. no. 1477-Article in journal (Refereed)
    Abstract [en]

    The coating of thin films is applied in numerous fields and many methods are employed for the deposition of these films. Some coating techniques may deposit films at high speed; for example, ordinary printing paper is coated with micrometre-thick layers of clay at a speed of tens of meters per second. However, to coat nanometre thin films at high speed, vacuum techniques are typically required, which increases the complexity of the process. Here, we report a simple wet chemical method for the high-speed coating of films with thicknesses at the nanometre level. This soap-film coating technique is based on forcing a substrate through a soap film that contains nanomaterials. Molecules and nanomaterials can be deposited at a thickness ranging from less than a monolayer to several layers at speeds up to meters per second. We believe that the soap-film coating method is potentially important for industrial-scale nanotechnology.

  • 9.
    Zhang, Renyun
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Andersson, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Andres, Britta
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Edström, Per
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Edvardsson, Sverker
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Forsberg, Sven
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Hummelgård, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Johansson, Niklas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Kalsson, Kristoffer
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Olsen, Martin
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Öhlund, Thomas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    High-speed deposition of multilayer nanofilms using soap-film coating2013Conference paper (Refereed)
    Abstract [en]

    High-speed deposition of multilayer nanofilms using soap-film coating

    Renyun Zhang, Henrik A. Andersson, Mattias Andersson, Britta Andres, Per Edström, Sverker Edvardsson, Sven Forsberg, Magnus Hummelgård, Niklas Johansson, Kristoffer Karlsson, Hans-Erik Nilsson, Martin Olsen, Tetsu Uesaka, Thomas Öhlund & Håkan Olin

    Department of Applied Science and Design, Mid Sweden University, SE-85170 Sundsvall, Sweden

    Email: renyun.zhang@miun.se or hakan.olin@miun.se

    Coating1 of thin films is of importance for making functionalized surfaces with applications in many fields from electronics to consumer packaging. To decrease the cost, large scale roll-to-roll2 coating techniques are usually done at high speed, for example, ordinary printing paper is coated at a speed of tens of meters per second by depositing micrometer thick layers of clay. However, nanometer thin films are harder to coat at high speed by wet-chemical methods, requiring special roll-to-roll vacuum techniques3 with the cost of higher complexity.

    Here, we report a simple wet chemical method for high-speed coating of films down to molecular thicknesses, called soap-film coating (SFC)4. The technique is based on forcing a substrate through a soap film that contains nanomaterials. In the simplest laboratory version, the films can be deposited by a hand-coating procedure set up in a couple of minutes. The method is quite general molecules or nanomaterials or sub-micrometer materials (Figure 1) with thicknesses ranging from less than a monolayer to several layers at speeds up to meters per second. The applications of soap-film coating is quite wide an we will show solar cells, electrochromic devices, optical nanoparticle crystals, and nano-film devices. We believe that the soap-film coating method is potentially important for industrial-scale nanotechnology.

    Fig. 1. Soap film coating of nanoparticles, layered materials, nanowires, and molecules. a sub-monolayer 240 nm silica nanoparticle (scale bar 2 µm) b monolayer c double layer. d monolayer gold nanoparticles. e single layer TiO2 nanoparticles. f sub-monolayer polystyrene (scale 2 µm), g monolayer of polystyrene. h triple-layer of polystyrene. i monolayer of Ferritin.  j AFM image of <1.5 layer GO film (3 µm x 2 µm). k clay on glass (scale 2 µm). l SFC coated nanocellulose. m Absorbance spectra Rhodamine B on a glass slide. AFM of SDS layers n (2 µm x 1.5 µm) and o (20 µm x 15 µm).

    References

    1. Tracton, A. A. Coating Technology Handbook (CRC Press, Boca Raton, 2006).

    2. Ohring, M. Materials science of thin films. (Academic press., 2001).

    3. Charles, B. Vacuum deposition onto webs, films and foils. (William Andrew, 2011).

    Zhang, R. Y., Andersson, H. A., Andersson, M., Andres, B., Edström, P., Edvardsson, S., Forsberg, S., Hummelgård, M., Johansson, N., Karlsson, K., Nilsson, H.-E., Olsen, M., Uesaka, T., Öhlund, T., Olin H. Soap film coating: High-speed deposition of multilayer nanofilms. Submitted.

1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf