miun.sePublications
Change search
Refine search result
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Andersson, Fredrik
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Quality Technology and Management, Mechanical Engineering and Mathematics.
    Skoglund, Per
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Quality Technology and Management, Mechanical Engineering and Mathematics.
    Viktorsson, Jan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Quality Technology and Management, Mechanical Engineering and Mathematics.
    Ainegren, Mats
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Quality Technology and Management, Mechanical Engineering and Mathematics.
    A Portable Douglas Bag System2015In: Congress Proceedings: ICSNS 2015 / [ed] Hakkarainen Anni, Lindinger Stefan, Linnamo Vesa, 2015, p. 59-Conference paper (Refereed)
  • 2.
    Botero Vega, Carlos Alberto
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Quality Management and Mechanical Engineering.
    Jiménez-Piqué, Emilio
    Universitat Politècnica de Catalunya, Barcelona.
    Roos, Stefan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Quality Management and Mechanical Engineering.
    Skoglund, Per
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Quality Management and Mechanical Engineering.
    Koptioug, Andrei
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Quality Management and Mechanical Engineering.
    Rännar, Lars-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Quality Management and Mechanical Engineering.
    Bäckström, Mikael
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Quality Management and Mechanical Engineering.
    Nanoindentation: a suitable tool in metal Additive Manufacturing2018Conference paper (Refereed)
  • 3.
    Chudinova, Ekaterina
    et al.
    Tomsk Polytechnic University, Tomsk, Russia.
    Surmeneva, Maria
    Tomsk Polytechnic University, Tomsk, Russia.
    Koptioug, Andrei
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Quality Technology and Management, Mechanical Engineering and Mathematics.
    Skoglund, Per
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Quality Technology and Management, Mechanical Engineering and Mathematics.
    Surmenev, Roman
    Tomsk Polytechnic University, Tomsk, Russia.
    Additive manufactured Ti6Al4V scaffolds with the RF-magnetron sputter deposited hydroxyapatite coating2016In: Journal of Physics: Conference Series, Institute of Physics Publishing (IOPP), 2016, Vol. 669, article id 012004Conference paper (Refereed)
    Abstract [en]

    Present paper reports on the results of surface modification of the additively manufactured porous Ti6Al4V scaffolds. Radio frequency (RF) magnetron sputtering was used to modify the surface of the alloy via deposition of the biocompatible hydroxyapatite (HA) coating. The surface morphology, chemical and phase composition of the HA-coated alloy were studied. It was revealed that RF magnetron sputtering allows preparing a homogeneous HA coating onto the entire surface of scaffolds.

  • 4.
    Chudinova, Ekaterina
    et al.
    Tomsk Polytechnic University, Tomsk, Russia.
    Surmeneva, Maria
    Tomsk Polytechnic University, Tomsk, Russia.
    Koptyug, Andrey
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Quality Technology and Management, Mechanical Engineering and Mathematics.
    Selezneva, Irina
    Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Puschino.
    Skoglund, Per
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Quality Technology and Management, Mechanical Engineering and Mathematics.
    Syrtanov, M
    Tomsk Polytechnic University, Tomsk, Russia.
    Surmenev, Roman
    Tomsk Polytechnic University, Tomsk, Russia.
    In Vitro Assessment of Hydroxyapatite Coating on the Surface of Additive Manufactured Ti6Al4V Scaffolds2017In: Materials Science Forum, ISSN 0255-5476, E-ISSN 1662-9752, Vol. 879, p. 2444-2449Article in journal (Refereed)
    Abstract [en]

    Custom orthopedic and dental implants may be fabricated by additive manufacturing (AM), for example using electron beam melting technology. This study is focused on the modification of the surface of Ti6Al4V alloy coin-like scaffolds fabricated via AM technology (EBM®) by radio frequency (RF) magnetron sputter deposition of hydroxyapatite (HA) coating. The scaffolds with HA coating were characterized by Scanning Electron microscopy, X-ray diffraction. HA coating showed a nanocrystalline structure with the crystallites of an average size of 32±9 nm. The ability of the surface to support adhesion and the proliferation of human mesenchymal stem cells was studied using biological short-term tests in vitro. In according to in vitro assessment, thin HA coating stimulated the attachment and proliferation of cells. Human mesenchymal stem cells cultured on the HA-coated scaffold also formed mineralized nodules.

  • 5.
    Chudinova, Ekaterina
    et al.
    Tomsk Polytechnic University, Tomsk, Russia.
    Surmeneva, Maria
    Tomsk Polytechnic University, Tomsk, Russia.
    Koptyug, Andrey
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Quality Technology and Management, Mechanical Engineering and Mathematics.
    Skoglund, Per
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Quality Technology and Management, Mechanical Engineering and Mathematics.
    Sharanova, A
    Tomsk Polytechnic University, Tomsk, Russia.
    Loza, K
    University of Duisburg-Essen, Germany.
    Epple, M
    University of Duisburg-Essen, Germany.
    Surmenev, Roman
    Tomsk Polytechnic University, Tomsk, Russia.
    Hydroxyapatite coating and silver nanoparticles assemblies on additively manufactured Ti6Al4V scaffolds2015Conference paper (Other academic)
  • 6.
    Lintzén, Nina
    et al.
    Luleå Univ. of Technology, Luleå.
    Danvind, Jonas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Quality Management and Mechanical Engineering.
    Melin Söderström, Erik
    Peak Innovation, Östersund.
    Nilsson, Kajsa
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Quality Management and Mechanical Engineering.
    Skoglund, Per
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Quality Management and Mechanical Engineering.
    Laboratory Investigation of Different Insulating Materials Used for Snow Storage2019In: Journal of cold regions engineering, ISSN 0887-381X, E-ISSN 1943-5495, Vol. 33, no 4, article id 04019012Article in journal (Refereed)
    Abstract [en]

    Storage of snow has become of increasing interest for the winter business industry. Covering a pile of snow with an insulating material protects the snow from heat transfer from the surroundings and reduces the melting. Storing snow enables ski resorts to set an opening date, and it can also be used to secure winter sports events that are dependent on snow. Cover materials that are commonly used as insulation are wood-based materials, such as sawdust, and textile materials and sheets. How efficiently a cover material functions as thermal insulation depends on the material characteristics and thickness of the insulating layer. In this study, results from a laboratory experiment are presented, which aimed at comparing different commonly used cover materials, as well as some other materials that have not previously been used as thermal insulation on snow. Different layer thicknesses were also investigated. The results show that the insulating capacity of sawdust is reduced with time. Despite degrading insulating properties with time, sawdust is still considered one of the best materials to use as insulation on snow, and it is also more efficient than the textile materials investigated in this study. Doubling the textile layers or adding a three-dimensional (3D) spacer textile, which implies adding a layer of air between the textile and the snow, reduces the snow melting. Water absorption, water transport, and evaporation of water affect the melting. In this work, evaporative cooling did not prove to reduce melting; therefore, it was not evident whether a textile material should be permeable. An interesting material used in the study was Quartzene, which absorbed all the melt water and protected the snow most efficiently of the materials tested. 

  • 7.
    Skoglund, Per
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Quality Management and Mechanical Engineering.
    Botero Vega, Carlos Alberto
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Quality Management and Mechanical Engineering.
    Koptioug, Andrei
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Quality Management and Mechanical Engineering.
    Rännar, Lars-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Quality Management and Mechanical Engineering.
    Bäckström, Mikael
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Quality Management and Mechanical Engineering.
    Possibility of the “cold start” of the build in Electron Beam Melting2018Conference paper (Refereed)
  • 8.
    Skoglund, Per
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Quality Technology and Management, Mechanical Engineering and Mathematics.
    Lund Ohlsson, Marie
    Mid Sweden University, Faculty of Human Sciences, Department of Health Sciences.
    Danvind, Jonas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Quality Technology and Management, Mechanical Engineering and Mathematics.
    Lower Leg Prosthesis for Cross-Country Skiing Classical Technique2013Conference paper (Refereed)
  • 9.
    Surmenev, Roman
    et al.
    Tomsk Polytechnic University, Tomsk, Russia.
    Surmeneva, Maria
    Tomsk Polytechnic University, Tomsk, Russia.
    Chudinova, Ekaterina
    Tomsk Polytechnic University, Tomsk, Russia.
    Koptioug, Andrei
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Quality Technology and Management, Mechanical Engineering and Mathematics.
    Melnikova, E.S.
    Skoglund, Per
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Quality Technology and Management, Mechanical Engineering and Mathematics.
    Prymak, O.
    Epple, M.
    Wittmar, A.
    Ulbricht, M
    Surface modification of additive manufactured titanium with CaP, Ag nanoparticles and ultrathin HA coating2016In: Proceedings BIOMAH-2016, 2016Conference paper (Refereed)
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf