Mid Sweden University

miun.sePublications
Change search
Refine search result
1 - 34 of 34
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Afewerki, Samson
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Development of catalytic enantioselective C-C bond-forming and cascade transformations by merging homogeneous or heterogeneous transition metal catalysis with asymmetric aminocatalysis2014Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Chiral molecules play a central role in our daily life and in nature, for instance the different enantiomers or diastereomers of a chiral molecule may show completely different biological activity. For this reason, it is a vital goal for synthetic chemists to design selective and efficient methodologies that allow the synthesis of the desired enantiomer. In this context, it is highly important that the concept of green chemistry is considered while designing new approaches that eventually will provide more environmental and sustainable chemical synthesis.The aim of this thesis is to develop the concept of combining transition metal catalysis and aminocatalysis in one process (dual catalysis). This strategy would give access to powerful tools to promote reactions that were not successful with either transition metal catalyst or the organocatalyst alone. The protocols presented in this thesis based on organocatalytic transformations via enamine or iminium intermediates or both, in combination with transition metal catalysis, describes new enantioselective organocatalytic procedures that afford valuable compounds with high chemo- and enantioselectivity from inexpensive commercial available starting materials. In paper I, we present a successful example of dual catalysis: the combination of transition metal activation of an electrophile and aminocatalyst activation of a nucleophile via enamine intermediate. In paper II, the opposite scenario is presented, here the transition metal activates the nucleophile and the aminocatalyst activates the electrophile via an iminium intermediate. In paper III,we present a domino Michael/carbocyclisation reaction that is catalysed by a chiral amine (via iminium/enamine activation) in combination with a transition metal catalysts activation of an electrophile. In paper IV, the concept of dual catalysis was further extended and applied for the highly enantioselective synthesis of valuable structural scaffolds, namely poly-substituted spirocyclic oxindoles. Finally, in paper V the concept of dual catalysis was expanded, by investigating more challenging and environmentally benign processes, such as the successful combination of a heterogeneous palladium and amine catalysts for the highly enantioselective synthesis of functionalised cyclopentenes, containing an all carbonquaternary stereocenter, dihydrofurans and dihydropyrrolidines.

    Download full text (pdf)
    fulltext
  • 2.
    Afewerki, Samson
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Direct regiospecific and highly enantioselective intermolecular a-allylic alkylation of aldehydes by combination of transition metal and chiral amine catalysts2012Conference paper (Refereed)
    Abstract [en]

    The direct intermolecular regiospecific and highly enantioselective a-allylic alkylation of linear aldehydes by combination of achiral bench stable Pd(0) complexes and simple chiral amines as co-catalysts is disclosed. The co-catalytic asymmetric chemoselective and regiospecific a-allylic alkylation reaction is linked in tandem with in situ reduction to give the corresponding 2-alkyl alcohols with high enantiomeric ratios (up to 98:2 er). It is also an expeditious entry to valuable 2-alkyl substituted hemiacetals and 2-alkyl-butane-1,4-diols.

  • 3.
    Afewerki, Samson
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Alimohammadzadeh, Rana
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Henshaw Osong, Sinke
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Tai, Cheuk-Wai
    The Arrhenius Laboratory, Stockholm University.
    Engstrand, Per
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Córdova, Armando
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Eco-friendly design for scalable direct fabrication of nanocelluloseManuscript (preprint) (Other academic)
    Download full text (pdf)
    fulltext
  • 4.
    Afewerki, Samson
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Alimohammadzadeh, Rana
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Osong, Sinke H.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Tai, Cheuk-Wai
    The Arrhenius Laboratory, Stockholm University.
    Engstrand, Per
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Cordova, Armando
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Sustainable Design for the Direct Fabrication and Highly Versatile Functionalization of Nanocelluloses2017In: Global Challenges, E-ISSN 2056-6646, Vol. 1, no 7, article id 1700045Article in journal (Refereed)
    Abstract [en]

    This study describes a novel sustainable concept for the scalable direct fabrication and functionalization of nanocellulose from wood pulp with reduced energy consumption. A central concept is the use of metal-free small organic molecules as mediators and catalysts for the production and subsequent versatile surface engineering of the cellulosic nanomaterials via organocatalysis and click chemistry. Here, “organoclick” chemistry enables the selective functionalization of nanocelluloses with different organic molecules as well as the binding of palladium ions or nanoparticles. The nanocellulosic material is also shown to function as a sustainable support for heterogeneous catalysis in modern organic synthesis (e.g., Suzuki cross-coupling transformations in water). The reported strategy not only addresses obstacles and challenges for the future utilization of nanocellulose (e.g., low moisture resistance, the need for green chemistry, and energy-intensive production) but also enables new applications for nanocellulosic materials in different areas.

    Download full text (pdf)
    fulltext
  • 5.
    Afewerki, Samson
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences, Engineering and Mathematics.
    Breistein, Palle
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences, Engineering and Mathematics.
    Pirttilä, Kristian
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences, Engineering and Mathematics.
    Deiana, Luca
    Univ Stockholm, Arrhenius Lab, Dept Organ Chem, S-10691 Stockholm, Sweden.
    Dziedzic, Pawel
    Univ Stockholm, Arrhenius Lab, Dept Organ Chem, S-10691 Stockholm, Sweden.
    Ibrahem, Ismail
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences, Engineering and Mathematics.
    Córdova, Armando
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences, Engineering and Mathematics.
    Catalytic Enantioselective beta-Alkylation of alpha,beta-Unsaturated Aldehydes by Combination of Transition-Metal- and Aminocatalysis: Total Synthesis of Bisabolane Sesquiterpenes2011In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 17, no 32, p. 8784-8788Article in journal (Refereed)
    Abstract [en]

    Branching out! The first co-catalytic enantioselective (up to 98:2 e.r.) β-alkylation of α,β-unsaturated aldehydes by combination of simple chiral amine and copper catalysts provides β-branched aldehydes in a one-pot protocol (see scheme). The methodology was applied to the short total syntheses of bisabolane sesquiterpenes (S)-(+)-curcumene, (E)-(S)-(+)-3- dehydrocurcumene and (S)-(+)-tumerone. © 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • 6.
    Afewerki, Samson
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences. Stockholm Univ, Arrhenius Lab, Berzelii Ctr EXSELENT, Stockholm.
    Cordova, Armando
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences. Stockholm Univ, Arrhenius Lab, Berzelii Ctr EXSELENT, Stockholm.
    Combinations of Aminocatalysts and Metal Catalysts: A Powerful Cooperative Approach in Selective Organic Synthesis2016In: Chemical Reviews, ISSN 0009-2665, E-ISSN 1520-6890, Vol. 116, no 22, p. 13512-13570Article, review/survey (Refereed)
    Abstract [en]

    The cooperation and interplay between organic and metal catalyst Arninocatalysis systems is of utmost importance in nature and chemical synthesis. Here innovative and selective cooperative catalyst systems can be designed by combining two catalysts that complement rather than inhibit one another. This refined strategy can permit chemical transformations unmanageable by either of the catalysts alone. This review summarizes innovations and developments in selective organic synthesis that have used cooperative dual catalysis by combining simple aminocatalysts with metal catalysts. Considerable efforts have been devoted to this fruitful field. This emerging area employs the different activation modes of amine and metal catalysts as a platform to address challenging reactions. Here, aminocatalysis (e.g., enamine activation catalysis, iminium activation catalysis, single occupied molecular orbital (SOMO) activation catalysis, and photoredox activation catalysis) is employed to activate unreactive carbonyl substrates. The transition metal catalyst complements by activating a variety of substrates through a range of interactions (e.g., electrophilic pi-allyl complex formation, Lewis acid activation, allenylidene complex formation, photoredox activation, C-H activation, etc.), and thereby novel concepts within catalysis are created. The inclusion of heterogeneous catalysis strategies allows for "green" chemistry development, catalyst recyclability, and the more eco-friendly synthesis of valuable compounds.

  • 7.
    Afewerki, Samson
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Cordova, Armando
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Cooperative Lewis Acids and Aminocatalysis2017In: Chiral Lewis Acids in Organic Synthesis / [ed] J. Mlynarski, Wiley-Blackwell , 2017, p. 345-374Chapter in book (Refereed)
    Abstract [en]

    This chapter describes the cooperative strategy of combining metal catalyst activation with aminocatalysis, with a focus on the metal acting as a Lewis acid catalyst. It gives examples where the metal catalyst promotes the reactivity of different substrates by the formation of reactive intermediates. These intermediates can act either as electrophiles or nucleophiles, which in turn can couple with nucleophilic enamine or electrophilic iminium intermediates formed between the carbonyl compounds and aminocatalyst. The chemical transformation ensues via the merging of the enamine and π‐allyl‐Pd complex via asymmetric counteranion‐direct catalysis (ACDC). Subsequently, several groups reported different co‐catalytic systems and chemical strategies for the α‐allylic alkylation of aldehydes and ketones. Cordova and coworkers reported the first example where iminium activation catalysis is combined with metal catalyst activation cooperatively. The stratagem was demonstrated for the catalytic enantioselective conjugate silyl addition to α,β‐unsaturated aldehydes.

  • 8.
    Afewerki, Samson
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Cordova, Armando
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Palo-Nieto, Carlos
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Synthesis of amides and amines from aldehydes or ketones by heterogeneous metal catalysis2019Patent (Other (popular science, discussion, etc.))
    Abstract [en]

    A mild and efficient synthesis of primary amines and amides from aldehydes or ketones using a heterogeneous metal catalyst and amine donor is disclosed. The initial heterogeneous metal-catalyzed reaction between the carbonyl and the amine donor components is followed by the addition of a suitable acylating agent component in one-pot, thus providing a catalytic one-pot three-component synthesis of amides. Integration of enzyme catalysis allows for eco-friendly one-pot co-catalytic synthesis of amides from aldehyde and ketone substrates, respectively. The process can be applied to asymmetric synthesis or to the co-catalytic one-pot three-component synthesis of capsaicin and its analogues from vanillin or vanillyl alcohol. A co-catalytic reductive amination/dynamic kinetic resolution (dkr) relay sequence for the asymmetric synthesis of optically active amides from ketones is disclosed. Implementation of a catalytic reductive amination/kinetic resolution (kr) relay sequence produces the corresponding optically active amide product and optical active primary amine product with the opposite stereochemistry from the starting ketones.

  • 9.
    Afewerki, Samson
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Córdova, Armando
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Enamine/Transition Metal Combined Catalysis: Catalytic Transformations Involving Organometallic Electrophilic Intermediates2019In: Topics in current chemistry, ISSN 0340-1022, E-ISSN 1436-5049, Vol. 377, no 6, article id 38Article in journal (Refereed)
    Abstract [en]

    The concept of merging enamine activation catalysis with transition metal catalysis is an important strategy, which allows for selective chemical transformations not accessible without this combination. The amine catalyst activates the carbonyl compounds through the formation of a reactive nucleophilic enamine intermediate and, in parallel, the transition metal activates a wide range of functionalities such as allylic substrates through the formation of reactive electrophilic π-allyl-metal complex. Since the first report of this strategy in 2006, considerable effort has been devoted to the successful advancement of this technology. In this chapter, these findings are highlighted and discussed. 

    Download full text (pdf)
    fulltext
  • 10.
    Afewerki, Samson
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences. Stockholms Universitet.
    Franco, A.
    Balu, A. M.
    Tai, C. -W
    Luque, R.
    Cordova, Armando
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences. Stockholms Universitet.
    Sustainable and recyclable heterogenous palladium catalysts from rice husk-derived biosilicates for Suzuki-Miyaura cross-couplings, aerobic oxidations and stereoselective cascade carbocyclizations2020In: Scientific Reports, E-ISSN 2045-2322, Vol. 10, no 1, article id 6407Article in journal (Refereed)
    Abstract [en]

    A new eco-friendly approach for the preparation of sustainable heterogeneous palladium catalysts from rice husk-derived biogenic silica (RHP-Si and RHU-Si). The designed heterogeneously supported palladium species (RHP-Si-NH2-Pd and RHU-Si-NH2-Pd) were fully characterized and successfully employed as catalysts for various chemical transformations (C–C bond-forming reactions, aerobic oxidations and carbocyclizations). Suzuki-Miyaura transformations were highly efficient in a green solvent system (H2O:EtOH (1:1) with excellent recyclability, providing the cross-coupling products with a wide range of functionalities in high isolated yields (up to 99%). Palladium species (Pd(0)-nanoparticles or Pd(II)) were also efficient catalysts in the green aerobic oxidation of an allylic alcohol and a co-catalytic stereoselective cascade carbocyclization transformation. In the latter case, a quaternary stereocenter was formed with excellent stereoselectivity (up to 27:1 dr). 

    Download full text (pdf)
    fulltext
  • 11.
    Afewerki, Samson
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences. Stockholm University.
    Guangning, Ma
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Deiana, Luca
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Wu, Hongli
    Tianjin Univ, Dept Chem, Sch Sci, Tianjin 300072, Peoples R China.;Tianjin Univ, Tianjin Key Lab Mol Optoelect Sci, Tianjin 300072, Peoples R China..
    Huang, Genping
    Tianjin Univ, Dept Chem, Sch Sci, Tianjin 300072, Peoples R China.;Tianjin Univ, Tianjin Key Lab Mol Optoelect Sci, Tianjin 300072, Peoples R China..
    Cordova, Armando
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences. Stockholm University.
    Off-Cycle Catalyst Cooperativity in Amine/Transition Metal Combined Catalysis: Bicyclo[3.2.0]heptanes as Key Species in Co-Catalytic Enantioselective Carbocyclizations2022In: Advanced Synthesis and Catalysis, ISSN 1615-4150, E-ISSN 1615-4169, Vol. 364, no 8, p. 1394-1401Article in journal (Refereed)
    Abstract [en]

    The existence of off-cycle catalyst cooperativity in amine/metal combined catalysis is disclosed. The experimental and density functional theory study of the amine/metal co-catalyzed enantioselective Michael/carbocyclization cascade reaction between allenes and alpha,beta-unsaturated aldehydes reveals that the dual catalysts can perform off-cycle cooperativity that gives access to stable bicyclo[3.2.0]heptane species that limits the carbocycle product formation. Insight into this mode of co-catalyst cooperativity sheds new light on the chiral amine/metal co-catalyzed reactions of to date and gives deeper understanding for improved future design of this type of enantioselective reactions.

  • 12.
    Afewerki, Samson
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Guangning, Ma
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Ibrahem, Ismail
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Cordova, Armando
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Highly enantioselective organo/metal cooperative catalysis for construction of spirocyclopentaneoxindoles2014In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 248, article id 173-ORGNArticle in journal (Other academic)
  • 13.
    Afewerki, Samson
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Ibrahem, Ismail
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Rydfjord, Jonas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Breistein, Palle
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Córdova, Armando
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Direct Regiospecific and Highly Enantioselective Intermolecular α-Allylic Alkylation of Aldehydes By Combination of Transition Metal and amine Catalysts2012In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 18, no 10, p. 2972-2977Article in journal (Refereed)
    Abstract [en]

    The first direct intermolecular regiospecific and highly enantioselective α-allylic alkylation of linear aldehydes by a combination of achiral bench-stable Pd 0 complexes and simple chiral amines as co-catalysts is disclosed. The co-catalytic asymmetric chemoselective and regiospecificα-allylic alkylation reaction is linked in tandem with in situ reduction to give the corresponding 2-alkyl alcohols with high enantiomeric ratios (up to 98:2 e.r.; e.r.=enantiomeric ratio). It is also an expeditious entry to valuable 2-alkyl substituted hemiacetals, 2-alkyl-butane-1,4-diols, and amines. The concise co-catalytic asymmetric total syntheses of biologically active natural products (e.g., Arundic acid) are disclosed. Go organic! Directintermolecular regiospecific and highly enantioselective α-allylic alkylation of linear aldehydes by a combination of achiral bench-stable Pd 0complexes and simple chiral amines as co-catalysts is disclosed (see scheme). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • 14.
    Afewerki, Samson
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences. Stockholm Univ, Berzelii Ctr EXSELENT, SE-10691 Stockholm, Sweden.
    Ma, Guangning
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Ibrahem, Ismail
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Liu, Leifeng
    Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden .
    Sun, Junliang
    Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden .
    Cordova, Armando
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences. Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden .
    Highly Enantioselective Control of Dynamic Cascade Transformations by Dual Catalysis: Asymmetric Synthesis of Polysubstituted Spirocyclic Oxindoles2015In: ACS Catalysis, ISSN 2155-5435, E-ISSN 2155-5435, Vol. 5, no 2, p. 1266-1272Article in journal (Refereed)
    Abstract [en]

    The highly enantioselective (up to >99.5:0.5 er) synthesis of polysubstituted spirocyclic oxindoles with four new contiguous stereocenters, including the spiro all-carbon quaternary center, is disclosed. It is accomplished by the highly stereoselective control of a dynamic conjugate/intramolecular allylic alkylation relay sequence based on the synergistic cooperation of metal and chiral amine catalysts in which the careful selection of organic Nand, metal complex, and chiral amine is essential. The intermolecular C-C bond-forming step occurred only when both the metal and chiral amine catalysts were present.

  • 15.
    Afewerki, Samson
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Palo-Nieto, Carlos
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Cordova, Armando
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Efficient Heterogeneous Palladium-Catalyzed Transfer Hydrogenolysis of Benzylic Alcohols by Formic Acid2020In: Synthesis (Stuttgart), ISSN 0039-7881, E-ISSN 1437-210X, Vol. 52, no 16, p. 2330-2336Article in journal (Refereed)
    Abstract [en]

    An efficient heterogeneous palladium-catalyzed transfer hydrogenolysis of primary, secondary, and tertiary benzylic alcohols using formic acid as hydrogen source has been developed. The resulting hydrocarbon products were obtained in excellent yields. Moreover, the system exhibits high chemoselectivity, reacting only with the hydroxy groups in the presence of other functional groups, and excellent recyclability.

  • 16.
    Afewerki, Samson
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences. Stockholm University, Stockholm.
    Wang, J. -X
    Jilin University, Changchun, China.
    Liao, W. -W
    Jilin University, Changchun, China.
    Cordova, Armando
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences. Stockholm University, Stockholm.
    The Chemical Synthesis and Applications of Tropane Alkaloids2019In: Alkaloids: Chemistry and Biology, ISSN 1099-4831, Vol. 81, p. 151-233Article in journal (Refereed)
    Abstract [en]

    Tropanes are an important class of alkaloid natural products that are found in plants all over the world. These compounds can exhibit significant biological activity and are among the oldest known medicines. In the early 19th century, tropanes were isolated, characterized, and synthesized by notable chemical researchers. Their significant biological activities have inspired tremendous research efforts toward their synthesis and the elucidation of their pharmacological activity both in academia and in industry. In this chapter, which addresses the developments in this field since 1994, the focus is on the synthesis of these compounds, and several examples of sophisticated synthetic protocols involving both asymmetric and catalytic approaches are described. In addition, the structures of more than 100 new alkaloids are included as well as the applications and pharmacological properties of some tropane alkaloids. 

  • 17.
    Anderson, Mattias
    et al.
    AlbaNova Univ Ctr, KTH Royal Inst Technol, Sch Biotechnol, Div Ind Biotechnol, SE-10691 Stockholm, Sweden.
    Afewerki, Samson
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Berglund, Per
    AlbaNova Univ Ctr, KTH Royal Inst Technol, Sch Biotechnol, Div Ind Biotechnol, SE-10691 Stockholm, Sweden.
    Cordova, Armando
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences. Stockholm Univ, Dept Organ Chem, Arrhenius Lab, SE-10691 Stockholm, Sweden.
    Total Synthesis of Capsaicin Analogues from Lignin-Derived Compounds by Combined Heterogeneous Metal, Organocatalytic and Enzymatic Cascades in One Pot2014In: Advanced Synthesis and Catalysis, ISSN 1615-4150, E-ISSN 1615-4169, Vol. 356, no 9, p. 2113-2118Article in journal (Refereed)
    Abstract [en]

    The total synthesis of capsaicin analogues was performed in one pot, starting from compounds that can be derived from lignin. Heterogeneous palladium nanoparticles were used to oxidise alcohols to aldehydes, which were further converted to amines by an enzyme cascade system, including an amine transaminase. It was shown that the palladium catalyst and the enzyme cascade system could be successfully combined in the same pot for conversion of alcohols to amines without any purification of intermediates. The intermediate vanillyl-amine, prepared with the enzyme cascade system, could be further converted to capsaicin analogues without any purification using either fatty acids and a lipase, or Schotten-Baumann conditions, in the same pot. An aldol compound (a simple lignin model) could also be used as starting material for the synthesis of capsaicin analogues. Using l-alanine as organocatalyst, vanillin could be obtained by a retro-aldol reaction. This could be combined with the enzyme cascade system to convert the aldol compound to vanillylamine in a one-step one-pot reaction.

  • 18.
    Cordova, Armando
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Afewerki, Samson
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Alimohammadzadeh, Rana
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Sanhueza, Italo
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Tai, Cheuk-Wai
    Stockholm University, Stockholm.
    Osong, Sinke H.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Engstrand, Per
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Ibrahem, Ismail
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    A sustainable strategy for production and functionalization of nanocelluloses2019In: Pure and Applied Chemistry, ISSN 0033-4545, E-ISSN 1365-3075, Vol. 91, no 5, p. 865-874Article in journal (Refereed)
    Abstract [en]

    A sustainable strategy for the neat production and surface functionalization of nanocellulose from wood pulp is disclosed. It is based on the combination of organocatalysis and click chemistry ("organoclick" chemistry) and starts with nanocellulose production by organic acid catalyzed hydrolysis and esterification of the pulp under neat conditions followed by homogenization. This nanocellulose fabrication route is scalable, reduces energy consumption and the organic acid can be efficiently recycled. Next, the surface is catalytically engineered by "organoclick" chemistry, which allows for selective and versatile attachment of different organic molecules (e.g. fluorescent probes, catalyst and pharmaceuticals). It also enables binding of metal ions and nanoparticles. This was exemplified by the fabrication of a heterogeneous nanocellulose-palladium nanoparticle catalyst, which is used for Suzuki cross-coupling transformations in water. The disclosed surface functionalization methodology is broad in scope and applicable to different nanocelluloses and cellulose based materials as well.

    Download full text (pdf)
    fulltext
  • 19.
    Cordova, Armando
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Afewerki, Samson
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Palo-Nieto, Carlos
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Mild Catalytic Reduction Of C—o Bonds And C═o Bonds Using A Recyclable Catalyst System2019Patent (Other (popular science, discussion, etc.))
    Abstract [en]

    A method of reducing a C--O bond to the corresponding C--H bond in a substrate, which could be a benzylic alcohol, allylic alcohol, ester or an ether bond beta to a hydroxyl group or alpha to a carbonyl group using a recyclable metal catalyst system. The recyclable catalyst system is also applicable to reducing a C.dbd.O bond to the corresponding C--OH bond and then C--H bond. These methodologies can be linked in one-pot to selective oxidation and depolymerizations of aromatic polyols such as lignin.

  • 20.
    Cordova, Armando
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Berglund, Per
    Andersson, Mattias
    Afewerki, Samson
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Efficient synthesis of amines and amides from alcohols and aldehydes by using cascade catalysis2019Patent (Other (popular science, discussion, etc.))
    Abstract [en]

    The present invention relates generally to an eco-friendly methodology for the conversion of alcohols and aldehydes to amines and amides using an integrated enzyme cascade system with metal-and organocatalysis. More specifically, the present invention relates to synthesis of capsaicinoids starting from vanillin alcohol and using a combination of an enzyme cascade system and catalysts. Furthermore, the method also relates to synthesis of capsaicinoids derivatives starting from vanillin alcohol derivatives and using a combination of an enzyme cascade system and catalysts.

  • 21.
    Córdova, Armando
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences, Engineering and Mathematics.
    Ibrahem, Ismail
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences, Engineering and Mathematics.
    Afewerki, Samson
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences, Engineering and Mathematics.
    Breistein, Palle
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences, Engineering and Mathematics.
    Deiana, Luca
    Zhao, Gui-Ling
    Dziedzic, Pawel
    Pirttilä, Kristian
    Lin, Shuangzheng
    TOC-Trends in Organic Chemistry: Selective Catalysis2010Conference paper (Other academic)
  • 22.
    Deiana, L.
    et al.
    Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden .
    Ghisu, L.
    Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden .
    Córdova, O.
    Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden .
    Afewerki, Samson
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Zhang, Renyun
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Córdova, Armando
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences. Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden .
    Efficient and highly enantioselective aerobic oxidation-michael- carbocyclization cascade transformations by integrated Pd(0)-CPG nanoparticle/chiral amine relay catalysis2014In: Synthesis (Stuttgart), ISSN 0039-7881, E-ISSN 1437-210X, Vol. 46, no 10, p. 1303-1310Article in journal (Refereed)
    Abstract [en]

    A series of highly diastereo- and enantioselective aerobic oxidation-Michael-carbocyclization cascade transformations by integrated heterogeneous Pd(0)-CPG nanoparticle/chiral amine relay catalysis are disclosed. The heterogeneous Pd(0)-CPG nanoparticle catalysts were efficient for both the sequential aerobic oxidation and dynamic kinetic asymmetric Michael- carbocyclization transformations, resulting in 1) oxidation of a variety of allylic alcohols to enals and 2) formation of cyclopentenes containing an all-carbon quaternary stereocenter in good to high yields with up to 20:1 dr and 99.5:0.5 er. © Georg Thieme Verlag Stuttgart.New York.

  • 23.
    Deiana, Luca
    et al.
    Univ Stockholm, Arrhenius Lab, Dept Organ Chem, S-10691 Stockholm, Sweden .
    Afewerki, Samson
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Palo-Nieto, Carlos
    Univ Stockholm, Arrhenius Lab, Dept Organ Chem, S-10691 Stockholm, Sweden .
    Verho, Oscar
    Univ Stockholm, Arrhenius Lab, Dept Organ Chem, S-10691 Stockholm, Sweden .
    Johnston, Eric V
    Univ Stockholm, Arrhenius Lab, Dept Organ Chem, S-10691 Stockholm, Sweden .
    Córdova, Armando
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Highly Enantioselective Cascade Transformations by Merging Heterogeneous Transition Metal Catalysis with Asymmetric Aminocatalysis2012In: Scientific reports, ISSN 2045-2322, Vol. 2, p. Art. no. 851-Article in journal (Refereed)
    Abstract [en]

    The concept of combining heterogeneous transition metal and amine catalysis for enantioselective cascade reactions has not yet been realized. This is of great advantage since it would allow for the recycling of expensive and non-environmentally friendly transition metals. We disclose that the use of a heterogeneous Pd-catalyst in combination with a simple chiral amine co-catalyst allows for highly enantioselective cascadetransformations. The preparative power of this process has been demonstrated in the context of asymmetric cascade Michael/carbocyclizationtransformations that delivers cyclopentenes bearing an all carbon quaternary stereocenters in high yields with up to 30:1 dr and 99% ee. Moreover, a variety of highly enantioselective cascade hetero-Michael/ carbocyclizations were developed for the one-pot synthesis of valuable dihydrofurans and pyrrolidines (up to 98% ee) by using bench-stable heterogeneous Pd and chiral amines as co-catalysts. © 2012 Macmillan Publishers Limited. All rights reserved.

    Download full text (pdf)
    fulltext
  • 24.
    Deiana, Luca
    et al.
    Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden.
    Ghisu, Lorenza
    Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden.
    Afewerki, Samson
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Verho, Oscar
    Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden.
    Johnston, Eric V.
    Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden.
    Hedin, Niklas
    Berzelii Center EXSELENT, Stockholm University, SE-106 91 Stockholm, Sweden.
    Bacsik, Zoltan
    Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106 91, Sweden .
    Cordova, Armando
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences. Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden .
    Enantioselective Heterogeneous Synergistic Catalysis for Asymmetric Cascade Transformations2014In: Advanced Synthesis and Catalysis, ISSN 1615-4150, E-ISSN 1615-4169, Vol. 356, no 11-12, p. 2485-2492Article in journal (Refereed)
    Abstract [en]

    A modular design for a novel heterogeneous synergistic catalytic system, which simultaneously activates the electrophile and nucleophile by the combined activation modes of a separate metal and non-metal catalyst, for asymmetric cascade transformations on a solid surface is disclosed. This modular catalysis strategy generates carbocycles (up to 97.5: 2.5 er) as well as spirocyclic oxindoles (97.5: 2.5 to > 99: 0.5 er), containing all-carbon quaternary centers, in a highly enantioselective fashion via a one-pot dynamic relay process.

  • 25.
    Deiana, Luca
    et al.
    Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden.
    Jiang, Yan
    Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden.
    Palo-Nieto, Carlos
    Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden.
    Afewerki, Samson
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Incerti-Pradillos, Celia A.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Verho, Oscar
    Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden.
    Tai, Cheuk-Wai
    Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden .
    Johnston, Eric V.
    Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden.
    Cordova, Armando
    Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden.
    Combined Heterogeneous Metal/Chiral Amine: Multiple Relay Catalysis for Versatile Eco-Friendly Synthesis2014In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 53, no 13, p. 3447-3451Article in journal (Refereed)
    Abstract [en]

    Herein is described a versatile and broad synergistic strategy for expansion of chemical space and the synthesis of valuable molecules (e.g. carbocycles and heterocycles), with up to three quaternary stereocenters, in a highly enantioselective fashion from simple alcohols (31examples, 95:5 to >99.5:0.5 e.r.) using integrated heterogeneous metal/chiral amine multiple relay catalysis and air/O-2 as the terminal oxidant. A novel highly 1,4-selective heterogeneous metal/amine co-catalyzed hydrogenation of enals was also added to the relay catalysis sequences.

  • 26.
    Guangning, Ma
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Afewerki, Samson
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Zhang, Keihang
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Ibrahem, Ismail
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Cordova, Armando
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Accelerating Amine-Catalyzed Asymmetric Reactions by Intermolecular Cooperative Thiourea/Oxime Hydrogen-Bond Catalysis2021In: European Journal of Organic Chemistry, ISSN 1434-193X, E-ISSN 1099-0690, Vol. 2021, no 21, p. 3043-3049Article in journal (Refereed)
    Abstract [en]

    The ability of intermolecular cooperative thiourea/oxime hydrogen-bond catalysis for improving and accelerating asymmetric aminocatalysis is presented. The two readily available hydrogen-bond-donating catalysts operates in synergy with a chiral amine catalyst to accomplish highly stereoselective transformations. The synergistic catalyst systems simultaneously activate both electrophiles and nucleophiles, and make the transformations more chemo- and stereoselective. This was exemplified by performing co-catalytic enantioselective direct intermolecular α-alkylation reactions of aldehydes, direct aldol reactions, and asymmetric conjugate reactions, which gave the corresponding products in high yields and enantiomeric ratios.

  • 27.
    Ibrahem, Ismail
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences, Engineering and Mathematics.
    Afewerki, Samson
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Breistein, Palle
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences, Engineering and Mathematics.
    Córdova, Armando
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    One-pot three-component catalytic asymmetric synthesis of homoallylboronates2012In: ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY. Vol 243, American Chemical Society (ACS), 2012, p. 889-INOR-Conference paper (Refereed)
    Abstract [en]

    1. A novel one-pot three-component catalytic enantioselective reaction between bis(pinacolato)diboron, enals and 2-(triphenylphosphoranylidene)acetate esters employing inexpensive bench stable Cu salts and simple chiral amine as co-catalysts is presented. The reaction proceeds via a tandem catalytic asymmetric conjugate borane addition/Wittig sequence where the b-boration step is 1,4-selective and gives the corresponding homoallylboronate products with high enantiomeric ratios (up to 97.5:2.5 er).

    2. The direct intermolecular regiospecific and highly enantioselective a-allylic alkylation of linear aldehydes by combination of achiral bench stable Pd(0) complexes and simple chiral amines as co-catalysts is disclosed. The co-catalytic asymmetric chemoselective and regiospecific a-allylic alkylation reaction is linked in tandem with in situ reduction to give the corresponding 2-alkyl alcohols with high enantiomeric ratios (up to 98:2 er). It is also an expeditious entry to valuable 2-alkyl substituted hemiacetals and 2-alkyl-butane-1,4-diols.

  • 28.
    Ibrahem, Ismail
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Ma, Guangning
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Afewerki, Samson
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Córdova, Armando
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Palladium/Chiral Amine Co-catalyzed Enantioselective beta-Arylation of alpha,beta-Unsaturated Aldehydes2013In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 52, no 3, p. 878-882Article in journal (Refereed)
    Abstract [en]

    Palladium and a simple chiral amine are used as co-catalysts for the enantioselective conjugate addition of aryl boronic acids to α,β-unsaturated aldehydes (see scheme). The synthetic utility of this co-catalyzed reaction was demonstrated in the short total syntheses of (R)-(-)-curcumene and 4-aryl-2-ones. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • 29.
    Ma, Guangning
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Afewerki, Samson
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Deiana, L.
    Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Sweden .
    Palo-Nieto, C.
    Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Sweden .
    Liu, L.
    Berzelii Center EXSELENT, Stockholm University, Sweden .
    Sun, J.
    Berzelii Center EXSELENT, Stockholm University, Sweden .
    Ibrahem, Ismail
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Córdova, Armando
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    A palladium/chiral amine co-catalyzed enantioselective dynamic cascade reaction: Synthesis of polysubstituted carbocycles with a quaternary carbon stereocenter2013In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 52, no 23, p. 6050-6054Article in journal (Refereed)
    Abstract [en]

    Polysubstituted 5- and 6-membered carbocycles were synthesized by the title reaction. The one-pot dynamic relay process generates four new stereocenters, including a quaternary carbon center, in a highly enantioselective fashion (99.5:0.5→99:0.5 e.r.) by using a simple combination of palladium and chiral amine co-catalysts. 

  • 30.
    Mridha, Moniruzzaman
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences. Uppsala University.
    Ma, Guangning
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Palo-Nieto, Carlos
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Afewerki, Samson
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences. Stockholm University.
    Cordova, Armando
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences. Stockholm University.
    Development of an Amino Acid/Hydroxy Oxime Dual Catalyst System for Highly Stereoselective Direct Asymmetric Aldol Reactions in the Presence of Water2017In: Synthesis (Stuttgart), ISSN 0039-7881, E-ISSN 1437-210X, Vol. 49, no 2, p. 383-390, article id ss-2015-z0592-opArticle in journal (Refereed)
    Abstract [en]

    An eco-friendly dual catalyst system for stereoselective aldol reactions in the presence of water is described. It is based on the cooperative action of acyclic amino acids and H-bond donating hydroxy oxime catalysts. The synthetic utility of this dual catalyst system was further demonstrated by applying it as the key step in the expeditious and highly stereoselective total synthesis of D-lyxo-phytosphingosine (29% overall yield). Here the amino acid/hydroxy oxime system significantly accelerated the direct aldol reactions in the presence of water as compared to organic solvents. The stereo-and chemoselectivity were also significantly increased.

    Download full text (pdf)
    fulltext
  • 31.
    Osong, Sinke H.
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Norgren, Sven
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Pettersson, Gunilla
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Engstrand, Per
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Còrdova, Armando
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Afewerki, Samson
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Alimohammadzadeh, Rana
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Processing of nanocellulose and applications relating to CTMP-based paperboard and foams2016In: International Mechanical Pulping Conference 2016, IMPC 2016, TAPPI Press, 2016, p. 87-93Conference paper (Refereed)
    Abstract [en]

    Although remarkable success has been made in the production of nanocellulose through several processing methods, it still remain a challenge to reduce the overall energy consumption, to use green chemistry and sustainable approach in order to make it feasible for industrial production of this novel nanomaterial. Herein, we have developed a new eco-friendly and sustainable approach to produce nanocellulose using organic acid combined with high-shear homogenisation, made hydrophobisation of nanocellulose and cross-linked the modified nanocellulosic material. Also, TEMPO-mediated oxidised nanocellulose was produced in order to compare the processing route with that of mild organic acid hydrolysis. Freeze-dried 3D structure of TEMPO-derived nanocellulose foam materials made fi-om bleached sulphite pulp and CTMP, respectively. Further, there is growing interest in using nanocellulose or microfibrillated cellulose (MFC) as an alternative paper sfrength additive in papermaking, and in using chemi-thermomechanical pulp (CTMP) with high freeness in producing CTMP-based paperboard with high bulk properties. To achieve greater strength improvement results, particularly for packaging paperboards, different proportions of cationic starch (CS) or MFC can be used to significantly improve the z-strength, with only a slight increase in sheet density. Research in this area is exploring CS or MFC as potential strength additives in CTMP-based paperboard, which is interesting from an industrial perspective. The mean grammage of the CTMP handsheets produced was approximately 150 g m~, and it was found that blending CTMP with CS or MFC yielded handsheets with significantly improved z-strength, tensile index, burst index and other strength properties at similar sheet densities.

  • 32.
    Palo-Nieto, Carlos
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Afewerki, Samson
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Anderson, Mattias
    AlbaNova Univ Ctr, KTH Royal Inst Technol, Sch Biotechnol, Div Ind Biotechnol, SE-10691 Stockholm, Sweden.
    Tai, Cheuk-Wai
    Stockholm Univ, Dept Mat & Environm Chem, Berzelii Ctr EXSELENT Porous Mat, S-10691 Stockholm, Sweden.
    Berglund, Per
    AlbaNova Univ Ctr, KTH Royal Inst Technol, Sch Biotechnol, Div Ind Biotechnol, SE-10691 Stockholm, Sweden.
    Cordova, Armando
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences. Stockholm Univ, Dept Mat & Environm Chem, Berzelii Ctr EXSELENT Porous Mat, S-10691 Stockholm, Sweden.
    Integrated Heterogeneous Metal/Enzymatic Multiple Relay Catalysis for Eco-Friendly and Asymmetric Synthesis2016In: ACS Catalysis, ISSN 2155-5435, E-ISSN 2155-5435, Vol. 6, no 6, p. 3932-3940Article in journal (Refereed)
    Abstract [en]

    Organic synthesis is in general performed using stepwise transformations where isolation and purification of key intermediates is often required prior to further reactions. Herein we disclose the concept of integrated heterogeneous metal/enzymatic multiple relay catalysis for eco-friendly and asymmetric synthesis of valuable molecules (e.g., amines and amides) in one-pot using a combination of heterogeneous metal and enzyme catalysts. Here reagents, catalysts, and different conditions can be introduced throughout the one-pot procedure involving multistep catalytic tandem operations. Several novel cocatalytic relay sequences (reductive amination/amidation, aerobic oxidation/reductive amination/amidation, reductive amination/kinetic resolution and reductive amination/ dynamic kinetic resolution) were developed. They were next applied to the direct synthesis of various biologically and optically active amines or amides in one-pot from simple aldehydes, ketones, or alcohols, respectively.

  • 33.
    Xu, Chao
    et al.
    Stockholm Univ, Stockholm.
    Afewerki, Samson
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences. Stockholm Univ, Stockholm.
    Tai, Cheuk-Wai
    Stockholm Univ, Stockholm.
    Cordova, Armando
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences. Stockholm Univ, Stockholm.
    Hedin, Niklas
    Stockholm Univ, Stockholm.
    Cyclopalladated Azo-linked Porous Polymers in C-C Bond Forming Reactions2016In: CHEMISTRYSELECT, ISSN 2365-6549, Vol. 1, no 18, p. 5801-5804Article in journal (Refereed)
    Abstract [en]

    We designed a new cyclopalladated porous polymer (cyclo-Pd (II)/PP-2) with up to 20.7 wt% of Pd and investigated it as a heterogeneous catalyst for C-C bond-forming transformations. It was also shown to be an effective scavenger for Pd2+ in solution. The palladacycles formed along the backbone of the azo-linked porous polymer (PP-2) with (Pd-N) and (Pd-C) bonds as were confirmed by a combination of spectroscopies. The cyclo-Pd(II)/PP-2 decomposed when used for Suzuki and Heck cross-coupling reactions, and acyclic-Pd/PP-2 formed with Pd nanoparticles (NPs) bound to the PP-2. The Suzuki couplings were highly efficient in water and exhibited excellent recyclability. The cyclo-Pd(II)/PP-2 was also an effective heterogeneous Lewis-acid catalyst for stereoselective carbocyclization reactions.

  • 34.
    Xu, Chao
    et al.
    Stockholm Univ, Berzelii Ctr EXSELENT Porous Mat, SE-10691 Stockholm, Sweden.
    Deiana, Luca
    Stockholm Univ, Berzelii Ctr EXSELENT Porous Mat, SE-10691 Stockholm, Sweden.
    Afewerki, Samson
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Incerti-Pradillos, Celia
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Cordova, Oscar
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Guo, Peng
    Stockholm Univ, Berzelii Ctr EXSELENT Porous Mat, SE-10691 Stockholm, Sweden.
    Cordova, Armando
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences. Stockholm Univ, Berzelii Ctr EXSELENT Porous Mat, SE-10691 Stockholm, Sweden.
    Hedin, Niklas
    Stockholm Univ, Berzelii Ctr EXSELENT Porous Mat, SE-10691 Stockholm, Sweden.
    The Use of Porous Palladium(II)-polyimine in Cooperatively-catalyzed Highly Enantioselective Cascade Transformations2015In: Advanced Synthesis and Catalysis, ISSN 1615-4150, E-ISSN 1615-4169, Vol. 357, no 9, p. 2150-2156Article in journal (Refereed)
    Abstract [en]

    Porous organic polymers have prospects as functional substrates for catalysis, with quite different molecular properties from inorganic substrates. Here we disclose for the first time that porous palladium(II)-polyimines are excellent catalysts for cooperatively catalyzed and enantioselective cascade reactions. In synergy with a chiral amine co-catalyst, polysubstituted cyclopentenes and spirocyclic oxindoles, including the all-carbon quaternary stereocenter, were synthesized in high yields. High diastereo- and enantioselectivities were achieved for these dynamic kinetic asymmetric transformations (DYKAT) of enals with propargylic nucleophiles.

1 - 34 of 34
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf