miun.sePublikasjoner
Endre søk
Begrens søket
1 - 9 of 9
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Bailey, Rosemary A.
    et al.
    University of St Andrews, Scotland.
    Cameron, Peter J.
    University of St Andrews, Scotland.
    Nilson, Tomas
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för matematik och ämnesdidaktik.
    Sesqui-arrays, a generalisation of triple arrays2018Inngår i: The Australasian Journal of Combinatorics, ISSN 1034-4942, Vol. 71, nr 3, s. 427-451Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A triple array is a rectangular array containing letters, each letter occurring equally often with no repeats in rows or columns, such that the number of letters common to two rows, two columns, or a rowand a column are (possibly different) non-zero constants. Deleting the condition on the letters common to a row and a column gives a double array. We propose the term sesqui-array for such an array when only the condition on pairs of columns is deleted. In this paper we give three constructions for sesqui-arrays. Therst gives $(n + 1)\times n^2$ arrays on n(n + 1) letters for $n\geq 2$. (Suchan array for n = 2 was found by Bagchi.) This construction uses Latin squares. The second uses the Sylvester graph, a subgraph of the Hoffman--Singleton graph, to build a good block design for 36 treatments in 42 blocks of size 6, and then uses this in a 736 sesqui-array for 42 letters.We also give a construction for K(K-1)(K-2)/2 sesqui-arrays on K(K-1)/2 letters from biplanes. The construction starts with a block of a biplane and produces an array which satises the requirements for a sesqui-array except possibly that of having no repeated letters in a row or column. We show that this condition holds if and only if the Hussain chains for the selected block contain no 4-cycles. A sufficient condition for the construction to give a triple array is that each Hussain chain is a union of 3-cycles; but this condition is not necessary, and we give a few further examples. We also discuss the question of which of these arrays provide good designs for experiments.

    Fulltekst (pdf)
    fulltext
  • 2.
    Nilson, Tomas
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för naturvetenskap, teknik och matematik.
    Pseudo-Youden designs balanced for intersection2011Inngår i: Journal of Statistical Planning and Inference, ISSN 0378-3758, E-ISSN 1873-1171, Vol. 141, nr 6, s. 2030-2034Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    If the row-column intersections of a row-column design $\mathcal{A}$ form a balanced incomplete block design, then $\mathcal{A}$ is said to be \emph{balanced for intersection}. This property was originally defined for triple arrays by McSorley et al. (2005a), section 8, where an example was presented and questions of existence were raised and discussed. We give sufficient conditions for the class of balanced grids in order to be balanced for intersection,  and prove that a family of binary pseudo-Youden designs has this property.

  • 3.
    Nilson, Tomas
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för ämnesdidaktik och matematik.
    Some matters of great balance2013Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    This thesis is based on four papers dealing with two different areas of mathematics.Paper I–III are in combinatorics, while Paper IV is in mathematical physics.In combinatorics, we work with design theory, one of whose applications aredesigning statistical experiments. Specifically, we are interested in symmetric incompleteblock designs (SBIBDs) and triple arrays and also the relationship betweenthese two types of designs.In Paper I, we investigate when a triple array can be balanced for intersectionwhich in the canonical case is equivalent to the inner design of the correspondingsymmetric balanced incomplete block design (SBIBD) being balanced. For this we derivenew existence criteria, and in particular we prove that the residual designof the related SBIBD must be quasi-symmetric, and give necessary and sufficientconditions on the intersection numbers. We also address the question of whenthe inner design is balanced with respect to every block of the SBIBD. We showthat such SBIBDs must possess the quasi-3 property, and we answer the existencequestion for all know classes of these designs.As triple arrays balanced for intersections seem to be very rare, it is natural toask if there are any other families of row-column designs with this property. In PaperII we give necessary and sufficient conditions for balanced grids to be balancedfor intersection and prove that all designs in an infinite family of binary pseudo-Youden designs are balanced for intersection.Existence of triple arrays is an open question. There is one construction of aninfinite, but special family called Paley triple arrays, and one general method forwhich one of the steps is unproved. In Paper III we investigate a third constructionmethod starting from Youden squares. This method was suggested in the literaturea long time ago, but was proven not to work by a counterexample. We show interalia that Youden squares from projective planes can never give a triple array bythis method, but that for every triple array corresponding to a biplane, there is asuitable Youden square for which the method works. Also, we construct the familyof Paley triple arrays by this method.In mathematical physics we work with solitons, which in nature can be seen asself-reinforcing waves acting like particles, and in mathematics as solutions of certainnon-linear differential equations. In Paper IV we study the non-commutativeversion of the two-dimensional Toda lattice for which we construct a family ofsolutions, and derive explicit solution formulas.

    Fulltekst (pdf)
    fulltext
  • 4.
    Nilson, Tomas
    et al.
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för ämnesdidaktik och matematik.
    Cameron, Peter J.
    University of St Andrews, Scotland.
    Triple arrays from difference sets2017Inngår i: Journal of combinatorial designs (Print), ISSN 1063-8539, E-ISSN 1520-6610, Vol. 25, nr 11, s. 494-506Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This paper addresses the question whether triple arrays can be constructed from Youden squares developed from difference sets. We prove that if the difference set is abelian, then having -1 as multiplier is both a necessary and sufficient condition for the construction to work. Using this, we are able to give a new infinite family of triple arrays. We also give an alternative and more direct version of the construction, leaving out the intermediate step via Youden squares. This is used when we analyse the case of non-abelian difference sets, for which we prove a sufficient condition for giving triple arrays. We do a computer search for such non-abelian difference sets, but have not found any examples satisfying the given condition.

  • 5.
    Nilson, Tomas
    et al.
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för ämnesdidaktik och matematik.
    Heidtmann, Pia
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för ämnesdidaktik och matematik.
    Inner balance of symmetric designs2014Inngår i: Designs, Codes and Cryptography, ISSN 0925-1022, E-ISSN 1573-7586, Vol. 71, nr 2, s. 247-260Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A triple array is a row-column design which carries two balanced incomplete block designs (BIBDs) as substructures. McSorley et al. (Des Codes Cryptogr 35: 21–45, 2005), Section 8, gave one example of a triple array that also carries a third BIBD, formed by its row-column intersections. This triple array was said to be balanced for intersection, and they made a search for more such triple arrays among all potential parameter sets up to some limit. No more examples were found, but some candidates with suitable parameters were suggested. We define the notion of an inner design with respect to a block for a symmetric BIBD and present criteria for when this inner design can be balanced. As triple arrays in the canonical case correspond to SBIBDs, this in turn yields new existence criteria for triple arrays balanced for intersection. In particular, we prove that the residual design of the related SBIBD with respect to the defining block must be quasi-symmetric, and give necessary and sufficient conditions on the intersection numbers. This, together with our parameter bounds enable us to exclude the suggested triple array candidates in McSorley et al. (Des Codes Cryptogr 35: 21–45, 2005) and many others in a wide search. Further we investigate the existence of SBIBDs whose inner designs are balanced with respect to every block. We show as a key result that such SBIBDs must possess the quasi-3 property, and we answer the existence question for all known classes of these designs.

  • 6.
    Nilson, Tomas
    et al.
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för tillämpad naturvetenskap och design.
    Schiebold, Cornelia
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för tillämpad naturvetenskap och design.
    On the noncommutative two-dimensional Toda latticeManuskript (preprint) (Annet vitenskapelig)
  • 7.
    Nilson, Tomas
    et al.
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för matematik och ämnesdidaktik.
    Schiebold, Cornelia
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för matematik och ämnesdidaktik. Uniwersytet Jana Kochanowskiego w Kielcach, Poland.
    Solution formulas for the two-dimensional Toda lattice and particle-like solutions with unexpected asymptotic behaviour2018Rapport (Annet vitenskapelig)
    Abstract [en]

    The first main aim of this article is to derive an explicit solution formula for the scalar 2d-Toda lattice depending on three independent operator parameters, ameliorating work in [29]. This is achieved by studying a noncommutative version of the two-dimensional Toda lattice, generalizing its soliton solution to the noncommutative setting.

    The purpose of the applications part is to show that the family of solutions obtained from matrix data exhibits a rich variety of asymptotic behaviour. The first indicator is that web structures, studied extensively in the literature, see [4] and references therein, are a subfamily. Then three further classes of solutions (with increasingly unusual behaviour) are constructed, and their asymptotics are derived. 

    Fulltekst (pdf)
    NilsonSchiebold
  • 8.
    Nilson, Tomas
    et al.
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för matematik och ämnesdidaktik.
    Schiebold, Cornelia
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för matematik och ämnesdidaktik. Uniwersytet Jana Kochanowskiego w Kielcach, Poland.
    Solution formulas for the two-dimensional Toda lattice and particle-like solutions with unexpected asymptotic behaviour2020Inngår i: Journal of Nonlinear Mathematical Physics, ISSN 1402-9251, E-ISSN 1776-0852, Vol. 27, nr 1, s. 57-94Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The first main aim of this article is to derive an explicit solution formula for the scalar two-dimensional Toda lattice depending on three independent operator parameters, ameliorating work in [31]. This is achieved by studying a noncommutative version of the 2d-Toda lattice, generalizing its soliton solution to the noncommutative setting. The purpose of the applications part is to show that the family of solutions obtained from matrix data exhibits a rich variety of asymptotic behaviour. The first indicator is that web structures, studied extensively in the literature, see [4] and references therein, are a subfamily. Then three further classes of solutions (with increasingly unusual behaviour) are constructed, and their asymptotics are derived. © 2019, © 2019 the authors.

  • 9.
    Nilson, Tomas
    et al.
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för ämnesdidaktik och matematik.
    Öhman, Lars-Daniel
    Umeå University, Department of Mathematics and Mathematical Statistics.
    Triple arrays and Youden squares2015Inngår i: Designs, Codes and Cryptography, ISSN 0925-1022, E-ISSN 1573-7586, Vol. 75, nr 3, s. 429-451Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This paper addresses the question of when triple arrays can be constructed from Youden squares by removing a column together with the symbols therein, and then exchanging the role of columns and symbols. The scope of the investigation is limited to the standard case of triple arrays with {Mathematical expression}. For triple arrays with {Mathematical expression} it is proven that they can never be constructed in this way, and for triple arrays with {Mathematical expression} it is proven that there always exists a suitable Youden square and a suitable column for this construction. Further, it is proven that Youden square constructed from a certain family of difference sets never give rise to triple arrays in this way but always gives rise to double arrays. Finally, it is proven that all triple arrays in the single known infinite family, the Paley triple arrays, can all be constructed in this way for some suitable choice of Youden square and column.

1 - 9 of 9
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf