miun.sePublications
Change search
Refine search result
12 1 - 50 of 69
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ahmad, Jawad
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Sidén, Johan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Screen Printed Piezoresistive Sensors for Monitoring Pressure Distribution in Wheelchair2019In: IEEE Sensors Journal, ISSN 1530-437X, E-ISSN 1558-1748, Vol. 19, no 6, p. 2055-2063Article in journal (Refereed)
    Abstract [en]

    Prolonged sitting inadequacies cause pressure ulcer to many individuals, especially to disadvantaged with reduced mobility. The measurement of distributed pressure and detection of irregular sitting postures is essential for preventing the risk of developing pressure ulcer. In this paper, a pressure sensing system capable of recognizing sitting postures by means of measuring interface pressure through printed pressure sensors is presented. A thin and flexible large area sensor is screen-printed using silver flake and carbon particle inks and comprises 16 sensing elements. For the evaluation of practical usability, the sensor characterization is carried out by conducting stability, repeatability, drift and bending tests. The performance of the sensor is checked under varying environmental conditions. Sitting posture detection accuracy above 80 % is achieved using a classification algorithm for four different sitting postures. Pressure distribution is monitored at a scanning rate of 10 Hz. A low power and small form factor of read-out electronics enables a compact packaging inside the seat cushion. The presented sensor design targets smart wheelchairs, but it is extendable to much larger areas, for example to be used in beds. The proposed sensing system would be of a great assistance for caregivers and health professionals.

  • 2.
    Ahmad, Jawad
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Sidén, Johan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Sitting Posture Recognition using Screen Printed Large Area Pressure Sensors2017In: Proceedings of IEEE Sensors, IEEE, 2017, p. 232-234Conference paper (Refereed)
    Abstract [en]

    In the biomedical sector, pressure sensors exhibit an important role towards monitoring and recognition of sitting posture for wheelchair users, which is helpful for pressure ulcer prevention and cure.  In this paper, a flexible and inexpensive screen printed large area pressure sensing system is presented. The large area sensor comprise three layers, is able to cancel-out false pressure detection, and achieves a sitting classification accuracy over 80 percent. The sensor matrix contains 16 sensors distributed over an area of 23.5 cm × 21.5 cm and the pressure points are monitored at a scanning rate of 77 Hz. The sensor system provides wireless communication and a Windows based GUI is developed that allows real-time presentation of pressure data by means of a pressure map. The presented sensor design targets smart wheelchairs but is suitable for any low cost and high throughput pressure distribution monitoring systems. 

  • 3.
    Ahmad, Jawad
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Li, Xiaotian
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Sidén, Johan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    An Analysis of Screen-Printed Stretchable Conductive Tracks on Thermoplastic Polyurethane2019In: FLEPS 2019 - IEEE International Conference on Flexible and Printable Sensors and Systems, Proceedings, 2019, article id 8792266Conference paper (Refereed)
  • 4.
    Ahmad, Jawad
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Li, Xiaotian
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Sidén, Johan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    An Analysis of Screen-Printed Stretchable Conductive Tracks on Thermoplastic Polyurethane2019Data set
    Abstract [en]

    The table is a result from cyclic strain test with 25 % and 50 % elongations of screen-printed stretchable conductive tracks on thermoplastic polyurethane.

  • 5. Alastalo, Ari
    et al.
    Mattila, Tomi
    Leppäniemi, Jakkoo
    Suhonen, Mika
    Kololuomo, Terho
    Schaller, Andreas
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Manuilskiy, Anatoliy
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Gao, Jinlan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Rusu, Alexandru
    Ayöz, Suat
    Stolichnov, Igor
    Siitonen, Simo
    Gulliksson, Mikael
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Siden, Johan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Lehnert, Tobias
    Adam, Jens
    Veith, Michael
    Merkulov, Alexey
    Damaschek, Yvonne
    Steiger, Jurgen
    Cederberg, Markus
    Konecny, Miroslav
    Printable WORM and FRAM memories and their applications2010In: Large area, organic & printed electronics (LOPE-C) 2010, 2010, p. 8-12Conference paper (Refereed)
  • 6.
    Alecrim, Viviane
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Zhang, Renyun
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Hummelgård, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Andersson, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Olin, Hakan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Photoconductivity of bulk and liquid processed MoS22014Conference paper (Other academic)
  • 7.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Development of Process Technology for Photon Radiation Measurement Applications2007Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis presents work related to new types of photo detectors and their applications. The focus has been on the development of process technology and methods by means of experimentation and measurements. The overall aim has been to develop and improve photon radiation measurement applications which are possible to manufacture using standard Si processing technology.

    A new type of position sensitive detector that has switching possibilities based on the MOS principle has been fabricated and characterized. The influence of mechanical stress on the linearity of position sensitive detectors has been investigated. The results show that mechanical stress arising, for example, by the mounting of detectors in capsules can have an impact on device performance. Under normal circumstances these effects are rather small, but are considered to be worthwhile taking into account.

    Electroless deposition of Nickel including various dopants in porous silicon was performed to manufacture electrical contacts for this interesting material. After heat treatment it was confirmed by X-ray diffraction that Nickel silicide had been formed and I-V measurements show that different contacts exhibit Ohmic and rectifying behaviour.

    Spectrometers are used extensively in the process and food industry to measure both the chemical content and the amount of substances used during manufacturing. These instruments are often rather bulky and costly, though the trend is towards smaller and more portable equipment. A spectrometer based on an array of Fabry-Perot interferometers mounted close to an array detector is shown to be a viable option for the manufacture of a very compact device. Such a device has minimal intermediate optics and it may be possible, in the future, for it to be developed and completely integrated with a detector array into a single unit.

  • 8.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Position Sensitive Detectors: Device Technology and Applications in Spectroscopy2008Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis deals with the development, processing and characterization of position sensitive detectors and, in addition, to the development of compact and cost effective spectrometers.

    Position sensitive detectors are used to measure, with great accuracy and speed, the position of a light spot incident on the surface. Their main use is for triangulation, displacement and vibration measurements.

    A type of position sensitive detector based on the MOS principle and using optically transparent indium tin oxide as a gate contact has been developed. This type of detector utilizes the MOS principle where an induced channel forms beneath the gate oxide in the surface of the Silicon substrate.

    One and two dimensional detectors have both been fabricated and characterized. The first measurements showed that the linearity did not fulfil expectations and it was suspected that stress induced by the gate contact could be the reason for the seemingly high nonlinearity.

    Further investigations into both the p-n junction and the MOS type position sensitive detectors lead to the conclusion that the indium tin oxide gate is responsible for inducing a substantial stress in the surface of the detector, thus giving rise to increased position nonlinearity. The heat treatment step which was conducted was determined to be critical as either a too short or too long heat treatment resulted in stress in the gate and channel leading to position nonlinearity. If a correctly timed heat treatment is performed then the detector’s linearity is in parity with the best commercial position sensitive detectors.

    In addition, the development of very small, compact and cost effective spectrometers has been performed with the aim of constructing devices for use in the process industry. The development of a wedge shaped array of Fabry-Perot interferometers that can be mounted directly on top of a detector makes it possible to construct a very compact spectrometer using the minimum amount of optics. This wedge interferometer has been evaluated by means of array pixel detectors and position sensitive detectors for both the infrared and the visible wavelength ranges.

    When used with a position sensitive detector it is necessary to use a slit to record the intensity of the interferogram for many points over the detector, equivalent to pixels on an array detector. Usually the use of moving parts in a spectrometer will impose the use of high precision scanning mechanisms and calibration. By using a position sensitive detector for the interferogram readout both the position and the intensity are known for every measurement point and thus the demands placed on the scanning system are minimized.

  • 9.
    Andersson, Henrik
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Andres, Britta
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Manuilskiy, Anatoliy
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Forsberg, Sven
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Hummelgård, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Bäckström, Joakim
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Zhang, Renyun
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Contacting paper-based supercapacitors to printed electronics on paper substrates2012In: Nordic Pulp & Paper Research Journal, ISSN 0283-2631, E-ISSN 2000-0669, Vol. 27, no 2, p. 476-480Article in journal (Refereed)
    Abstract [en]

    Hybrid printed electronics, in which printed structures and silicon-based components co-exist will likely be among the first commercial solutions. In this case the paper substrate acts much in the same way as circuit boards, containing conductive tracks and acting as a carrier for the electrical components. It is important to consider the contacting of the components to be able to produce low resistance electrical contacts to the conductive tracks. Supercapacitors are able to deliver a large amount of current in a short time and are a good option for short term energy storage and if the printed product is to be used only one, or a few times, it can be the only power source needed. When manufacturing printed electronics, the overall resistance of the printed tracks as well as the contact resistance of the mounted components will add up to the total resistance of the system. A high resistance will cause a voltage drop from the power source to the component. This will waste power that goes to Joule heating and also the voltage and current available to components may be too low to drive them. If the intention is to use a power supply such as batteries or solar cells this becomes a limitation. In this article have been tested several conductive adhesives used to contact paper based supercapacitors to ink jet printed silver tracks on paper. The best adhesive gives about 0.3 Ω per contact, a factor 17 better compared to the worst which gave 5 Ω. The peak power that is possible to take out from a printed system with a flexible battery and super capacitors is about 10 times higher than compared with the same system with only the battery.

  • 10.
    Andersson, Henrik
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Bertilsson, Kent
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Thungström, Göran
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Processing and Characterization of a MOS Type Tetra Lateral Position Sensitive Detector with Indium Tin Oxide Gate Contact2008In: IEEE Sensors Journal, ISSN 1530-437X, E-ISSN 1558-1748, Vol. 8, no 9-10, p. 1704-1709Article in journal (Refereed)
    Abstract [en]

    A 2-D tetra lateral position sensitive detector (PSD) based on the metal-oxide-semiconductor (MOS) principle has been manufactured and characterized. The active area of the device is 5 nun x 5 mm and the intention is to use the central 4 nun x 4 nun for low nonlinearity measurements. The gate contact is made of indium tin oxide (ITO) that is a degenerate electrically conducting semiconductor, which, in addition, is also transparent in the visible part of the spectrum. The use of a MOS structure results in a processing with no necessity to use implantation or diffusion in order to make the resistive p-layer as in a conventional p-n junction lateral effect PSD. Position measurements show good linearity in the middle 4 nun x 4 mm area. Within the middle 2.1 mm x 2.1 mm, the nonlinearity is within 1.7% of the active area with a position detection error of maximum 60 mu m. Measured MOS IV characteristics are compared to a level 3 spice model fit and show good agreement. The threshold voltage is determined to be -0.03 V. Responsivity measurements show a high sensitivity in the visible spectral region.

  • 11.
    Andersson, Henrik
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Bylund, Nicklas
    CTRR, AB Sandvik Coromant.
    Thungström, Göran
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Analysis and improvement of the position nonlinearity caused by a residual stress in MOS-type position-sensitive detectors with indium tin oxide gate contact2008In: Semiconductor Science and Technology, ISSN 0268-1242, E-ISSN 1361-6641, Vol. 23, no 7, p. 1-10Article in journal (Refereed)
    Abstract [en]

    In this paper, lateral effect position-sensitive detectors based on the MOS principle have been fabricated in lengths of 15 mm, 45 mm and 60 mm. The gate contact covering the active area consists of indium tin oxide which is a degenerate semiconductor transparent in the visible spectral range. Characterization and analysis have both been performed especially withparticular focus on the nonlinearity believed to be caused by stray stress induced in the inversion channel originating in the indium tin oxide gate contact. Stress in the channel will change the resistance in a non-uniform manner because of the piezoresistance effect, thus causing a nonlinearity in the position determination. It has been shown that the heat treatmentgreatly influences the linearity of the position-sensitive detectors. A heat treatment performed correctly results in 60 mm and 15 mm detectors with nonlinearity within ±0.1% and 45 mm detectors with nonlinearity within ±0.15% over 60% of the active length. This is an improvement over the previous results with this type of MOS position-sensitive detector. By performing a correctly timed heat treatment this PSD type has the potential to be used incommon position-sensing applications.

  • 12.
    Andersson, Henrik
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Hammarling, Krister
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Sidén, Johan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Manuilskiy, Anatoliy
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Öhlund, Thomas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Modified EAS Tag Used as a Resistive Sensor Platform2012In: MDPI Electronics, ISSN 2079-9292, Vol. 1, no 2, p. 32-46Article in journal (Refereed)
    Abstract [en]

    In this article, a modified design of an RF Radio Frequency Electronic ArticleSurveillance (EAS) tag, used as a sensor platform, is manufactured and characterized. EAStags are passive devices consisting of a capacitor and coil, tuned to a resonance frequencyreadable by the detector equipment, in this case 8.2 MHz. They were originally used todetect whether merchandise was being moved through the detection gates at shop exits, inwhich case an alarm was triggered. If the capacitance is divided in two and a resistivesensor device inserted in between, the resonant Inductor-Capacitor (LC) circuit becomes anInductor-Capacitor-Capacitor-Resistor LCCR circuit and can be used as a sensor tag. Ahigh sensor resistance means that one capacitor is decoupled, leading to one resonancefrequency, while a low resistance will couple both capacitances into the circuit, resulting ina lower resonance frequency. Different types of resistive sensors exist that are able todetect properties such as pressure, moisture, light and temperature. The tag is manufacturedin Aluminum foil on a polyetylentereftalat (PET) substrate, resulting in a cost effectiveRF-platform for various resistive sensors. Two types of tags are designed andmanufactured, one with parallel plate capacitors and the other with interdigital capacitors.To test the tags, a resistive tilt sensor is mounted and the tags are characterized using anetwork analyzer. It is shown that for high resistance, the tags have a resonance frequencyof more than 10 MHz while for low values the frequency approaches 8.2 MHz.

  • 13.
    Andersson, Henrik
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Lidenmark, Cecilia
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Öhlund, Thomas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Örtegren, Jonas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Manuilskiy, Anatoliy
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Forsberg, Sven
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Evaluation of coatings applied to flexible substrates to enhance quality of ink jet printed silver nano-particle structures2012In: IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part C, ISSN 1083-4400, E-ISSN 1558-1241, Vol. 2, no 2, p. 342-348Article in journal (Refereed)
    Abstract [en]

    Different types of the commercial surface treatment InkAid have been evaluated as a surface treatment to enhance print quality of silver nano-particle ink structures printed on polyimide and polyethene substrate. Originally these coatings have been specified to be applied on substrates for graphical ink jet printing. On the coated polyimide and polyethene substrates lines of different widths have been printed using a Dimatix materials printer together with silver nano-particle ink manufactured by Advanced Nano Products. The prints have then been evaluated in terms of print quality and resistivity before and after sintering. The results show that the application of these coatings can improve the print quality considerably, making it possible to print lines with a good definition, which is not  otherwise possible with this type of ink on this substrate types. It has been found that the coating Semi Gloss provides the best results, both in terms of print quality as well as the lowest resistivity. The resistivity on polyethene is 3.5*10-7Ωm at best when sintered at 150°C and for polyimide  8.9*10-8Ωm sintered at 200°C. This corresponds to a conductivity of about  4.5% and  18%of bulk silver, respectively. It can be concluded that applying such PVP based coatings to polyethene and polyimide will increase the print quality quite substantially, making it possible to print patterns with requirements of smaller line widths and more details than what is possible without coating.

  • 14.
    Andersson, Henrik
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Manuilskiy, Anatoliy
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Gao, Jinlan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Lidenmark, Cecilia
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Sidén, Johan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Forsberg, Sven
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Unander, Tomas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. Dewire AB, Sundsvall 85185, Sweden.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Investigation of Humidity Sensor Effect in Silver Nanoparticle Ink Sensors Printed on Paper2014In: IEEE Sensors Journal, ISSN 1530-437X, E-ISSN 1558-1748, Vol. 14, no 3, p. Art. no. 6615915-Article in journal (Refereed)
    Abstract [en]

    Thin inkjet-printed tracks of silver nanoparticles have previously been observed to show a non-reversible decrease in resistance when exposed to a high degree of relative humidity and thus providing sensor functionality with a memory effect. This paper provides a more in-depth explanation of the observed humidity sensor effect that originates from inkjet-printed silver nanoparticle sensors on a paper substrate. It is shown that the geometry of the sensor has a large effect on the sensor's initial resistance, and therefore also on the sensor's resistive dynamic range. The importance of the sensor geometry is believed to be due to the amount of solvent from the ink interacting with the coating of the paper substrate, which in turn enables the diffusion of salts from the paper coating into the ink and thus affecting the silver ink.

  • 15.
    Andersson, Henrik
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Manuilskiy, Anatoliy
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Haller, Stefan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Hummelgård, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Sidén, Johan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Hummelgård, Christine
    Acreo Swedish ICT AB.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Assembling surface mounted components on ink-jet printed double sided paper circuit board2014In: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 25, p. Art. no. 094002-Article in journal (Refereed)
    Abstract [en]

    Printed electronics is a rapidly developing field where many components can already be manufactured on flexible substrates by printing or by other high speed manufacturing methods. However, the functionality of even the most inexpensive microcontroller or other integrated circuit is, at the present time and for the foreseeable future, out of reach by means of fully printed components. Therefore, it is of interest to investigate hybrid printed electronics, where regular electrical components are mounted on flexible substrates to achieve high functionality at a low cost. Moreover, the use of paper as a substrate for printed electronics is of growing interest because it is an environmentally friendly and renewable material and is, additionally, the main material used for many packages in which electronics functionalities could be integrated. One of the challenges for such hybrid printed electronics is the mounting of the components and the interconnection between layers on flexible substrates with printed conductive tracks that should provide as low a resistance as possible while still being able to be used in a high speed manufacturing process. In this article, several conductive adhesives are evaluated as well as soldering for mounting surface mounted components on a paper circuit board with inkjet printed tracks and, in addition, a double sided Arduino compatible circuit board is manufactured and programmed.

  • 16.
    Andersson, Henrik
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Manuilskiy, Anatoliy
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Lidenmark, Cecilia
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Gao, Jinlan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Öhlund, Thomas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Forsberg, Sven
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Örtegren, Jonas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Schmidt, Wolfgang
    Schoeller Technocell GmbH and Co. KG, Burg Gretesch, D-49086, Osnabrück, Germany.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    The influence of paper coating content on room temperature sintering of silver nanoparticle ink2013In: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 24, no 45, p. Art. no. 455203-Article in journal (Refereed)
    Abstract [en]

    The resistance of inkjet printed lines using a silver nanoparticle based ink can be very dependent on the substrate. A very large difference in resistivity was observed for tracks printed on paper substrates with aluminum oxide based coatings compared to silica based coatings. Silica based coatings are often cationized with polymers using chloride as a counter ion. It is suggested that the precipitation of silver salts is the cause of the high resistivity, since papers pretreated with salt solutions containing ions that precipitate silver salts gave a high resistance. Silver nitrate has a high solubility and paper pretreated with nitrate ions gave a low resistivity without sintering. The results obtained show that, by choosing the correct type of paper substrate, it is possible to manufacture printed structures, such as interconnects on paper, without the need for, or at least to reduce the need for, post-print sintering. This phenomenon is, of course, ink specific. Inks without or with a low silver ion content are not expected to behave in this manner. In some sensor applications, a high resistivity is desired and, by using the correct combination of ink and paper, these types of sensors can be facilitated.

  • 17.
    Andersson, Henrik
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Manuilskiy, Anatoliy
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Sidén, Johan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Gao, Jinlan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Hummelgård, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Kunninmel, Gokuldev
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Chemically programmed ink-jet printed resistive WORM memory array and readout circuit2014In: Materials Research Express, ISSN 2053-1591, Vol. 1, no 3, p. 035021-Article in journal (Refereed)
    Abstract [en]

    In this paper an ink-jet printed write once read many (WORM) resistive memory fabricated on paper substrate is presented. The memory elements are programmed for different resistance states by printing triethylene glycol monoethyl ether on the substrate before the actual memory element is printed using silver nano particle ink. The resistance is thus able to be set to a broad range of values without changing the geometry of the elements. A memory card consisting of 16 elements is manufactured for which the elements are each programmed to one of four defined logic levels, providing a total of 4294 967 296 unique possible combinations. Using a readout circuit, originally developed for resistive sensors to avoid crosstalk between elements, a memory card reader is manufactured that is able to read the values of the memory card and transfer the data to a PC. Such printed memory cards can be used in various applications.

  • 18.
    Andersson, Henrik
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Manuilskiy, Anatoliy
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Thungström, Göran
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Lundgren, Anders
    SiTek Electro Opt, S-43330 Partille, Sweden.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Principle of FT Spectrometer based on a Lateral Effect Position Sensitive Detector and Multi Channel Fabry-Perot Interferometer2009In: Measurement, ISSN 0263-2241, E-ISSN 1873-412X, Vol. 42, no 5, p. 668-671Article in journal (Refereed)
    Abstract [en]

    The principle of a new type of multi channel Fourier-Transform spectrometer based on a multi channel wedge Fabry-Perot interferometer using a one dimensional lateral effect Position Sensitive Detector and a scanning slit for interferogram readout have been shown. The design of this spectrometer is very compact and the readout electronics very simple. The drawback of using a scanning slit system is minimized by the use of a position sensitive detector where the position is inherently known for each measurement. Experiments show that the position can be resolved with high accuracy and the summation of the two photocurrents gives the interferogram after scanning the slit between the wedge interferometer and the position sensitive detector. The spectral resolution obtained with a 25mm wedge interferometer together with a 45mm position sensitive detector and a 25µm slit is about 5nm around 600nm wavelength range, which is close to the theoretically anticipated resolution. The evaluated spectrometer setup show promising results and could be used in applications where compact and low cost spectrometers are required.

  • 19.
    Andersson, Henrik
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Manuilskiy, Anatoliy
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Thungström, Göran
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Broadband Parameters of Compact FT Spectrometer based on Fabry-Perot Interferometer Integrated with detector2008Conference paper (Refereed)
  • 20.
    Andersson, Henrik
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Manuilskiy, Anatoliy
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Thungström, Göran
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Evaluation of an Integrated Fourier-Transform Spectrometer Utilizing a Lateral Effect Position Sensitive Detector with a Multi-Channel Fabry-Perot Interferometer2008In: Measurement science and technology, ISSN 0957-0233, E-ISSN 1361-6501, Vol. 19, no 4, p. 045306-Article in journal (Refereed)
    Abstract [en]

    The basis of this paper is the evaluation of an integrated multi-channel Fourier-transform (FT) spectrometer based on a multi-channel wedge Fabry-Perot interferometer and a one-dimensional lateral effect position sensitive detector (PSD). The use of a PSD for an interferogram readout allows for a simple scanning mechanism with no requirement for any position reference. The use of a wedge-shaped interferometer makes it possible to integrate it directly onto the PSD surface, thus producing a very compact spectrometer. The capabilities of the spectrometer are demonstrated by absorption spectral measurements using a reference sample. In addition, spectral measurements on 532 nm DPSS and 632.8 nm He-Ne lasers are presented. The resolution of the spectrometer is approximately 5 nm. The evaluated spectrometer set-up can be used in applications where compact and low cost spectrometers are required, such as in process control and in education. Further, it is shown that there are deteriorations in very high accuracy position measurements, which are caused by changes in incident light intensity. A model describing the above-mentioned nonlinearities was developed based on analysing the equivalent circuit for PSDs and parameters such as leakage current and serial resistance. Additionally, a method is proposed to assist in the reduction of the nonlinearity caused by this effect.

  • 21.
    Andersson, Henrik
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Manuilskiy, Anatoliy
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Unander, Tomas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Lidenmark, Cecilia
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Forsberg, Sven
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Inkjet printed silver nanoparticle humidity sensor with memory effect on paper2012In: IEEE Sensors Journal, ISSN 1530-437X, E-ISSN 1558-1748, Vol. 12, no 6, p. 1901-1905Article in journal (Other academic)
    Abstract [en]

    In this paper, the design and the manufacture of an inkjet printed resistive type humidity sensor on paper are reported. After having been exposed to humidity above a given threshold level, the resistance of the sensor decreases substantially and remains at that level even when thehumidity is reduced. It is possible to deduce the humidity level by monitoring the resistance. The main benefit of the printed sensor presented in this case is in relation to its very low production costs. It has also been shown that both the ink type and this paper combination used prove to be crucial in order to obtain the desired sensor effect. More research is required in order to fully understand the humidity sintering effect on the nano particle ink and the role of the substrate. However, the observed effect can be put to use in printed humidity sensors which possess a memoryfunction. The sensor can be used in various applications for environmental monitoring, for example, in situations where a large number of inexpensive and disposable humidity sensors are required which are able to detect whether they have been subjected to high humidity. This could be the checking of transportation conditions of goods or monitoring humidity within buildings. © 2001-2012 IEEE.

  • 22.
    Andersson, Henrik
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Mattsson, Claes
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Thungström, Göran
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Lundgren, Anders
    SiTek Electro Optics.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    The effect of mechanical stress on lateral-effect position sensitive detector characteristics2006In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, E-ISSN 1872-9576, Vol. 563, no 1, p. 150-154Article in journal (Refereed)
    Abstract [en]

    Position-sensitive detectors (PSDs) are widely used in noncontact measurement systems. In order to minimize the size of such systems, interest has increased in mounting the PSD chip directly onto printed circuit boards (PCBs). Stress may be induced in the PSD because of the large differences in thermal expansion coefficients, as well as the long-term geometrical stability of the chip packaging. Mechanical stress has previously been shown to have an effect on the performance of semiconductors. The accuracy, or linearity, of a lateral effect PSD is largely dependent on the homogeneity of the resistive layer. Variations of the resistivity over the active area of the PSD will result in an uneven distribution of photo-generated current, and hence an error in the readout position. In this work experiments were performed to investigate the influence of anisotropic mechanical stress in terms of nonlinearity. PSD chips of 60×3 mm active area were subjected, respectively, to different amounts of compressive and tensile stress to determine the influence on the linearity.

  • 23.
    Andersson, Henrik
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Rusu, A
    EPFL-STI-IEL-NANOLAB, Bat ELB342, Station 11, CH-1015 Lausanne, Switzerland.
    Manuilskiy, Anatoliy
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Haller, Stefan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Ayöz, S
    EPFL-STI-IEL-NANOLAB, Bat ELB342, Station 11, CH-1015 Lausanne, Switzerland.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    System of nano-silver inkjet printed memory cards and PC card reader and programmer2011In: Microelectronics Journal, ISSN 0959-8324, Vol. 42, no 1, p. 21-27Article in journal (Refereed)
    Abstract [en]

    This work describes the development of inkjet printed, low-cost memory cards, and complementary pair of memory card reader and card reader/programmer for PCs. This constitutes a complete system that can be used for various applications. The memory cards are manufactured by inkjet printing nano-silver ink on photo paper substrate. The printed memory structures have an initial high resistance that can later be programmed to specific values representing data on the cards, the so called Write Once Read Many (WORM) memories. The memory card reader measures the resistance values of the memory cells and reads it back to the computer by USB connection. Using multiple resistance levels that represent different states it is possible to have a larger number of selectable combinations with fewer physical bits compared to binary coding. This somewhat counters one of the limitations of resistive memory technology that basically each cell needs one physical contact. The number of possible states is related to the resolution of the reader and the stability of the WORM memory.

  • 24.
    Andersson, Henrik
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Sidén, Johan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Skerved, Vincent
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Li, Xiaotian
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Gyllner, Linnea
    Iniss Triab AB, S-16250 Vällingby.
    Soldering Surface Mount Components onto Inkjet Printed Conductors on Paper Substrate using Industrial Processes2016In: IEEE Transactions on Components, Packaging, and Manufacturing Technology, ISSN 2156-3950, E-ISSN 2156-3985, Vol. 6, no 3, p. 478-485, article id 7422029Article in journal (Refereed)
    Abstract [en]

    This paper describes mounting of standard surface mount component packages on a paper substrate using an industrial solder process with a low-temperature solder. The use of paper as a substrate for printed flexible electronics is becoming more and more widespread as an alternative to the more commonly used plastic substrates, such as polyethylene and polyimide. Paper has the benefits of being environmentally friendly, recyclable, and renewable, as well as inexpensive. It is shown that it is possible to mount standard surface mount device components on paper substrates using low-temperature solder in an industrial soldering process. The contact resistances obtained are mostly low, although the yield of functioning contacts is low. The reason is cracking of the substrate coating layer that goes through the printed silver tracks. It was observed that the cracks appear mostly close to the contact pads, the most likely cause is thermal mismatch between the coating layer and solder and also thermal expansion of the photo paper resin coating. The smallest component package size, 0201, resulted in the highest yield of >80% with decreasing yield for larger package sizes.

  • 25.
    Andersson, Henrik
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Thungström, Göran
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Lundgren, A.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Processing and characterization of a position sensitive lateral-effect metal oxide semiconductor detector2004In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, E-ISSN 1872-9576, Vol. 531, no 1-2, p. 140-146Article in journal (Refereed)
    Abstract [en]

    Position sensingdetectors (PSDs) are useful in many applications, such as vibration, displacement, and triangulation measurements. In this paper we present a lateral-effect metal oxide semiconductor PSD with switchingcapability fabricated by our group. The detector can be switched off by the application of 0V on the substrate and 0.2V on the gate. A linear current-position behaviour is exhibited by the detector at a substrate bias of both 5 and 10V with the gate at 0V. There is no effect on the linearity when the substrate voltage is changed from 5 to 10V. The non-linearity is within 0.2% at a distance of 71.5mm from origin for 5, 10 and 15mm device length.

  • 26.
    Andersson, Henrik
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Thungström, Göran
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Electroless deposition and silicidation of Ni contacts into p-type Porous Silicon2008In: Journal of porous materials, ISSN 1380-2224, E-ISSN 1573-4854, Vol. 15, no 3, p. 335-341Article in journal (Refereed)
    Abstract [en]

    Porous Silicon (PS) has attracted much attention since the discovery of its photo luminescent behavior. It has also been used for various other applications such as electroluminescent light emitting-diodes (LEDs), photodetectors and solar cells. For such devices, it is important to make good metallic Ohmic contacts to the PS in order to maximize the efficiency. In order to produce buried contacts, barrier layers, Schottky devices, etc. in PS, it is advantageous to deposit metal that covers not only the surface of the porous layer, but also the inside walls and the bottom of the pores. In this work experiments were performed to examine the morphology and properties of electroless deposition of Nickel into p-type PS and subsequent formation of Nickel silicide after heat treatment. Circular PS samples of 6 mm diameter were produced by anodizing p-type Silicon wafers for 15 min and were subsequently plated with Ni using three different plating baths. The pores are on average 20 µm deep and 4 µm wide. Two samples of each type were heat treated in an nitrogen atmosphere for one hour at 400 and 600°C respectively to produce Nickel silicide. Reference samples were made by means of electron beam evaporation of Ni. SEM micrographs show that the best pore coverage was achieved using the Ni plating bath containing hypophosphite. I–V characterization shows that different rectifying and Ohmic contacts can be formed between electroless deposited Ni and PS depending on the conditions of the heat treatment. XRD and EDX characterizations show that both the NiSi and Ni2Si phases exist in the sample at the same time.

  • 27.
    Andersson, Henrik
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Öhlund, Thomas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Manuilskiy, Anatoliy
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Forsberg, Sven
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences, Engineering and Mathematics.
    Örtegren, Jonas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Evaluation of InkAid surface treatment to enhance print quality of ANP silver nano-particle ink on plastic substrates2010In: Large Area, Organic & Printed Electronics (LOPE-C) 2010, Frankfurt, 2010, p. 241-245Conference paper (Refereed)
  • 28.
    Andersson, Henrik
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Šuly, Pavol
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. Tomas Bata University in Zlin, Zlin, Czech Republic.
    Thungström, Göran
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Engholm, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Zhang, Renyun
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Mašlík, Jan
    Tomas Bata University in Zlin, Zlin, Czech Republic.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    PEDOT: PSS thermoelectric generators printed on paper substrates2019In: Journal of Low Power Electronics and Applications, ISSN 2079-9268, Vol. 9, no 2Article in journal (Refereed)
    Abstract [en]

    Flexible electronics is a field gathering a growing interest among researchers and companies with widely varying applications, such as organic light emitting diodes, transistors as well as many different sensors. If the circuit should be portable or off-grid, the power sources available are batteries, supercapacitors or some type of power generator. Thermoelectric generators produce electrical energy by the diffusion of charge carriers in response to heat flux caused by a temperature gradient between junctions of dissimilar materials. As wearables, flexible electronics and intelligent packaging applications increase, there is a need for low-cost, recyclable and printable power sources. For such applications, printed thermoelectric generators (TEGs) are an interesting power source, which can also be combined with printable energy storage, such as supercapacitors. Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), or PEDOT:PSS, is a conductive polymer that has gathered interest as a thermoelectric material. Plastic substrates are commonly used for printed electronics, but an interesting and emerging alternative is to use paper. In this article, a printed thermoelectric generator consisting of PEDOT:PSS and silver inks was printed on two common types of paper substrates, which could be used to power electronic circuits on paper. 

  • 29.
    Andres, Britta
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Forsberg, Sven
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Vilches, Ana Paola
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Zhang, Renyun
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Hummelgård, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Bäckström, Joakim
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Supercapacitors with graphene coated paper electrodes2012In: Nordic Pulp & Paper Research Journal, ISSN 0283-2631, E-ISSN 2000-0669, Vol. 27, no 2, p. 481-485Article in journal (Refereed)
    Abstract [en]

    Paper based supercapacitors are prepared by stacking a paper between two graphene electrodes and soaking these in an aqueous electrolyte. We demonstrate that supercapacitors can easily be manufactured by using proven paper technologies. Several different electrode materials were compared and two types of contacting material, silver and graphite foil were tested. The influence of the paper used as separator was also investigated. The supercapacitors with a graphene-gold nanoparticle composite as electrodes showed a specific capacitance of up to 100 F/g and an energy density of 1.27 Wh/kg. The energy density can further be increased by using other electrolytes. The silver contacts showed a pseudo capacitance, which the graphite contacts did not. The papers tested had a minor effect on the capacitance, but they have an influence on the weight and the volume of the supercapacitor.

  • 30.
    Balliu, Enkeleda
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Engholm, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Forsberg, Sven
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Laser-assisted reduction of graphene oxide for paper based large area flexible electronics2016In: Proceedings of SPIE - The International Society for Optical Engineering, SPIE - International Society for Optical Engineering, 2016, Vol. 9736, article id 973610Conference paper (Refereed)
    Abstract [en]

    In this work we present a promising method for fabrication of conductive tracks on paper based substrates by laser assisted reduction of Graphene Oxide (GO). Printed electronics on paper based substrates is be coming more popular due to lower cost and recyclability. Fabrication of conductive tracks is of great importance where metal, carbon and polymer inks are commonly used. An emerging option is reduced graphene oxide (r-GO), which can be a good conductor. Here we have evaluated reduction of GO by using a 532 nm laser source, showing promising results with a decrease of sheet resistance from >100 M Ω/Sqr for unreduced GO down to 126 Ω/Sqr. without any observable damage to the paper substrates.

  • 31.
    Balliu, Enkeleda
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Engholm, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Öhlund, Thomas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Selective laser sintering of inkjet-printed silver nanoparticle inks on paper substrates to achieve highly conductive patterns2018In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 8, no 1, article id 10408Article in journal (Refereed)
    Abstract [en]

    Development of cost-effective and environmentally friendly manufacturing methods will enable important advances for the production of large-scale flexible electronics. Laser processing has shown to be a promising candidate that offers a fast and non-destructive way to produce highly conductive patterns on flexible substrates such as plastics. However, an emerging option with a lower environmental impact is instead the use of cellulose-based flexible substrates, such as paper. In this work we investigate the use of laser sintering of silver nanoparticle inks, which were inkjet-printed on three different types of paper. Patterns with a high conductivity could be manufactured where a special care was taken to prevent the substrates from damage by the intense laser light. We found that the best results was obtained for a photopaper, with a conductivity of 1.63 107 S/m corresponding to nearly 26% of the bulk silver conductivity. In addition, we demonstrate laser sintering to fabricate a fully functional near field communication tag printed on a photopaper. Our results can have an important bearing for the development of cost-effective and environmentally friendly production methods for flexible electronics on a large scale. 

  • 32.
    Balliu, Enkeleda
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Hummelgård, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Engholm, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Laser sintering of silver nano-particles inks printed on paper substrates2015In: Proceedings of SPIE - The International Society for Optical Engineering, SPIE - International Society for Optical Engineering, 2015, p. Art. no. 935112-Conference paper (Refereed)
    Abstract [en]

    In this work we have investigated the use of laser sintering of different ink-jet printed nano-particle inks (NPIs) on paper substrates. Laser sintering is shown to offer a fast and non-destructive way to produce paper based printed electronics. A continuous wave fiber laser source at 1064 nm is used and evaluated in combination with a galvo-scanning mirror system. A conductivity in order of 2.16 ∗ 107 S/m is reached for the silver NPI structures corresponding to nearly 35 % conductivity compared to that of bulk silver and this is achieved without any observable damage to the paper substrate. © 2015 SPIE.

  • 33.
    Brugés Martelo, Javier Mauricio
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Andersson, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Design.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Lundgren, Jan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Surface topography characterization of high-quality PE coated paperboard using confocal chromatic microscope and3D SEM stereo-photogrammetry technique2017Conference paper (Refereed)
    Abstract [en]

    Coating paperboard enhances printability and optical quality of the product as well as other important properties like packaging performance and shelf-life. To obtain high quality products a quality control of the manufacturing process requires identifying those manufacturing parameters that affect it. Roughness measurement and characterization of coating thickness are examples of these control parameters. Optical instruments measuring these quantities range from laboratory equipment to in-line and on-line sensors. However, the variety of instruments and sometimes misunderstanding of their limitations generate uncorrelated measurements, which are no longer valid to their comparison. The new ISO 25178 standard for surface texture provides guidelines to metrologists to address some this problem. Here, we report a case study for surface characterization of high quality printing polyethylene (PE) coated paperboard for high quality printing, where surface roughness is a key parameter. Two imaging methods to create topographic measurements will be compared, i.e. a confocal chromatic microscope and a scanning electron microscope (SEM). For the latter, stereo photogrammetry is used and 3D topographic profiles are obtained from Alicona MeX software. Leach and Haitjema [Leach, R., & Haitjema, H. (2010). Bandwidth characteristics and comparisons of surface texture measuring instruments. Measurement Science and Technology, 21(3), 032001] addressed the topic on how to design comparisons when using different instruments for areal texture measurement. We use their bandwidth matching concept, since it provides an extension to the ISO 25178 guidelines, ensuring that the instrumentation used to characterize the samples are within its measuring limits and further analysis of the results can be correlated. It is important to adopt a good metrology practice in order to translate these parameters into our future work. We expect to extend these findings into a real-time optical sensor, which later can be implemented in an industrial manufacturing environment for high optical quality paper and paperboard.

  • 34.
    Engholm, Magnus
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Hammarling, Krister
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Sandberg, Mats
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. RISE Acreo.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    A Bio-Compatible Fiber Optic pH Sensor Based on a Thin Core Interferometric Technique2019In: Photonics, ISSN 2304-6732, Vol. 6, no 1, article id 11Article in journal (Refereed)
    Abstract [en]

    There is an increasing demand for compact, reliable and versatile sensor concepts for pH-level monitoring within several industrial, chemical as well as bio-medical applications. Many pHsensors concepts have been proposed, however, there is still a need for improved sensor solutionswith respect to reliability, durability and miniaturization but also for multiparameter sensing. Here wepresent a conceptual verification, which includes theoretical simulations as well as experimentalevaluation of a fiber optic pH-sensor based on a bio-compatible pH sensitive material not previouslyused in this context. The fiber optic sensor is based on a Mach-Zehnder interferometric technique,where the pH sensitive material is coated on a short, typically 20-25 mm thin core fiber splicedbetween two standard single mode fibers. The working principle of the sensor is simulated by usingCOMSOL Multiphysics. The simulations are used as a guideline for the construction of the sensorsthat have been experimentally evaluated in different liquids with pH ranging from 1.95 to 11.89. The results are promising, showing the potential for the development of bio-compatible fiber optic pH sensor with short response time, high sensitivity and broad measurement range. The developedsensor concept can find future use in many medical- or bio-chemical applications as well as inenvironmental monitoring of large areas. Challenges encountered during the sensor developmentdue to variation in the design parameters are discussed.

  • 35.
    Forsberg, Viviane
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Engholm, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Thungström, Göran
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Zhang, Renyun
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Hummelgård, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Norgren, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Photodetector of multilayer exfoliated MoS2 deposited on polyimide films2018Conference paper (Other academic)
    Abstract [en]

    We fabricated a photodetector based on multilayer molybdenum disulfide (MoS2) by micromechanical cleavage of a molybdenite crystal using a polyimide film. We deposited 40 nm of gold by vacuum sputtering and copper tape was used for the contacts.  Without any surface treatment, we achieved high responsivity at different incident optical power. The calculated responsivity was 23 mA/W of incident optical power in the range between 400 and 800 nm. For the responsivity measurement it was estimated that MoS2 have a bandgap of 1.6 eV, which lies between monolayer and multilayer films. The thickness of the MoS2 thin film was determined by Raman spectroscopy evaluating the difference between the in plane  and out of plane  Raman modes. The measurement of IV curves indicated Ohmic contacts in respect to the Au regardless of the incident optical power. Our device fabrication was much simpler than previous reported devices and can be used to test the light absorption and luminescence capabilities of exfoliated MoS2.

  • 36.
    Forsberg, Viviane
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Maslik, Jan
    Tomas Bata University.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Hummelgård, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Dahlström, Christina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Toivakka, Martti
    Åbo Akademi University.
    Koppolu, Rajesh
    Åbo Akademi University.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Norgren, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Printability of functional inkjet inks onto commercial inkjet substrates and a taylor made pigmented coated paper2018Conference paper (Other academic)
    Abstract [en]

    Printed electronics are of increasing interest. The substrates used have primarily been plastics although the interest for cellulose-based substrates is increasing due to the environmental aspect as well as cost. The requirements of substrates for electronically active inks differs from graphical inks and therefore we have investigated a custom-made pigment based coated paper and compared it to commercial photo-papers and a coated PE film.

    Our goal with the study of different substrates was to select the most suitable substrate to print water based 2D materials inkjet inks for flexible electronics.

    The discovery of graphene, a layered material achieved from the exfoliation of graphite, has resulted in the study of other materials with similar properties to cover areas where graphene could not be used due to the absence of a bandgap in the material. For example in thin film transistors (TFT) a semiconductor layer is essential to enable turn on and off the device. This semiconductor layer can be achieved using various materials but particular interest have been dedicated to abundant and cheap 2D materials such as the transition metal dichalcogenide (TMD) molybdenum disulfide (MoS2). To date, most of the dispersions based on TMDs use organic solvents or water solutions of surfactants. Previously we focus on the study of environmental friendly inks produced by liquid phase exfoliation (LPE) of MoS2 in water using cellulose stabilizers such as ethyl cellulose (EC), cellulose nanofibrils (CNF) and nanofibrilcellulose (NFC). We have study various aspects of the ink fabrication includi  ng pH range, the source of MoS2, nanosheets thickness, particle size distribution,  ink stabilizers, ink concentration, viscosity and surface tension. These inks have very low concentration requiring a number of printing passes to cover the substrate. Therefore the substrate selection is crucial as a large amount of solvent is to be absorb by the substrate. Our goal was to use such an ink to print electrodes of MoS2 into a paper substrate after substrate selection.

    Commercial photo papers, a commercial coated PE film and a tailor made multilayer pigment coated paper substrate were used for the substrate selection analysis.  We print the substrates using a DIMATIX inkjet printer with a 10 pL printing head using the distillated water waveform supplied by the printer manufacturer. The voltage used was 23V and 4 nozzles were used for the print outs. The inkjet ink used was the organic PEDOT:PSS. We printed lines ranging from 1 pixel to 20 pixels with 1, 2 and 3 printing passes. The printing quality was evaluated through measurements of the waviness of the printed lines measured after imaging the printed samples with a SEM microscope. The line width measurement was done using the software from the SEM.

    We also evaluated the structure of the coatings using SEM and topography measurements. The ink penetration through the substrates was evaluated using Raman Spectroscopy. For the pigmented coated sample we measured 4% of ink penetration through the substrate for the 1pxl printed line printed once onto the paper.  Cross-section SEM images of the printed lines were made to visualize the ink penetration into the substrate.

    Regarding the electrical conductivity of the printed samples, the differences in resistivity varying the width of the printed lines and the number of printed passes were evaluated. The resistivity of the printed electrodes was evaluated using the 2-points probe method. Before the resistivity measurements, the printed substrates were heated at 50°C and 100°C for 30 minutes in an oven.

    We choose the PEDOT:PSS ink because it is a low price ink compared to metal nanoparticles inks for printed electronics. The print outs had low resistivity at a few printing passes with no need for sintering at high temperatures. The MoS2 ink has a very high resistance at a few printing passes due to lower coverage of the substrate therefore for this ink these measurements were not possible to be made. The main pigment composition of the paper coatings of the substrates was evaluated using FT-IR and EDX, these data plus the coating structure evaluated by SEM was related to the print quality.

    The best in test papers were used to print MoS2 electrodes. After the printing tests, another step for the optimization of the MoS2 ink properties shall be carried out in future studies for better print quality. We also evaluated the surface energy of the substrates through contact angle measurements to match the surface tension of the PEDOT:PSS ink and later the MoS2 ink. Although the pigmented coated printing substrate did not show better results than the commercial photo papers and PE foil in terms of line quality, it shows the lowest resistivity and sufficient results for low cost recyclable electronics, which do not require high conductivity. Nevertheless, the substrate was very thin and it could even be used in magazines as traditional lightweight coated papers (LWC) are used but with the additional of a printed electronic feature.

  • 37.
    Forsberg, Viviane
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Zhang, Renyun
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Bäckström, Joakim
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Dahlström, Christina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Norgren, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Andres, Britta
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Liquid Exfoliation of Layered Materials in Water for Inkjet Printing2016In: Printing for Fabrication 2016: Materials, Applications, and Processes, USA: Curran Associates, Inc., 2016Conference paper (Refereed)
    Abstract [en]

    MoS2 is a layered material which is abundant and non-toxic and has been increasingly studied during the last few years as a semiconducting alternative to graphene. While most studies have been performed on single MoS2 nanosheets, for example to demonstrate high-performance electronic transistors, more work is needed to explore the use of MoS2 in printed electronics. The importance of using MoS2 as a printed electronic material could be understood by considering the several orders higher electron mobility in MoS2, even in several nanometer thick layers, compared to the organic and other materials used today. In the few studies performed so far on printing MoS2, the developed dispersions used mainly organic solvents that might be detrimental for the environment. Here, we show an environmentally friendly liquid-based exfoliation method in water where the solution was stabilized by sodium dodecyl sulfate (SDS) surfactant. The dispersions consisted of very thin MoS2 nanosheets with average lateral size of about 150 nm, surface tension of 28 mN m-1 and a shelf life of a year. Although both the concentration and viscosity was less than optimal, we were able to inkjet print the MoS2 solution on paper and on PET films, using multiple printing passes. By tuning the concentration/viscosity, this approach might lead to an environmentally friendly MoS2 ink suitable for printed electronics.

  • 38.
    Forsberg, Viviane
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Zhang, Renyun
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Bäckström, Joakim
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Dahlström, Christina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Norgren, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Andres, Britta
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Liquid Exfoliation of Layered Materials in Water for Inkjet Printing2016In: Journal of Imaging Science and Technology, ISSN 1062-3701, E-ISSN 1943-3522, Vol. 60, no 4, p. 1-7, article id 040405Article in journal (Refereed)
    Abstract [en]

    MoS2 is a layered material which is abundant and non-toxic and has been increasingly studied during the last few years as a semiconducting alternative to graphene. While most studies have been performed on single MoS2 nanosheets, for example to demonstrate high-performance electronic transistors, more work is needed to explore the use of MoS2 in printed electronics. The importance of using MoS2 as a printed electronic material could be understood by considering the several orders higher electron mobility in MoS2, even in several nanometer thick layers, compared to the organic and other materials used today. In the few studies performed so far on printing MoS2, the developed dispersions used mainly organic solvents that might be detrimental for the environment. Here, we show an environmentally friendly liquid-based exfoliation method in water where the solution was stabilized by sodium dodecyl sulfate (SDS) surfactant. The dispersions consisted of very thin MoS2 nanosheets with average lateral size of about 150 nm, surface tension of 28 mN m(-1), and a shelf life of a year. Although both the concentration and viscosity was less than optimal, we were able to inkjet print the MoS2 solution on paper and on PET films, using multiple printing passes. By tuning the concentration/viscosity, this approach might lead to an environmentally friendly MoS2 ink suitable for printed electronics.

  • 39.
    Hammarling, Krister
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Engholm, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Sandberg, Mats
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. RISE Acreo AB, Bredgatan 33, 601 17 Norrköping, Sweden.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Broad-Range Hydrogel-Based pH Sensor with Capacitive Readout Manufactured on a Flexible Substrate2018In: Chemosensors, ISSN 2227-9040, Vol. 6, no 3, p. 15article id 30Article in journal (Refereed)
    Abstract [en]

    Environmental monitoring of land, water and air, is an area receiving greater attention because of human health and safety concerns. Monitoring the type of pollution and concentration levels is vital, so that appropriate contingency plans can be determined. To effectively monitor the environment, there is a need for new sensors and sensor systems that suits these type of measurements. However, the diversity of sensors suitable for low, battery powered- and large area sensor systems are limited. We have manufactured and characterized a flexible pH sensor using laser processing and blade coating techniques that is able to measure pH between 2.94 and 11.80. The sensor consists of an interdigital capacitance with a pH sensitive hydrogel coating. Thin sensors can reach 95% of their final value value within 3 min, and are stable after 4 min. Good repeatability was achieved in regard to cycling of the sensor with different pH and multiple measurements from dry state. We have also studied the relation between an interdigital capacitance penetration depth and hydrogels expansion. We believe that our passive sensor is suitable to be used in low power and large area sensor networks.

  • 40.
    Hammarling, Krister
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Sandberg, Mats
    RISE Acreo AB, Norrköping.
    Engholm, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Synthesis, Curing Behavior and Swell Tests of pH-Responsive Coatings from Acryl-Terminated Oligo(beta-Amino Esters)2018In: CHEMOSENSORS, ISSN 2227-9040, Vol. 6, no 1, article id 10Article in journal (Refereed)
    Abstract [en]

    The ability of acryl-terminated oligo(beta-amino esters) (AOBAE) to be coated on fibers and printed electronics without solvents and to be cross-linked to a pH-responsive coatings, makes AOBAE-based coatings a potential type of pH-sensor coating. However, there are currently no reports of AOBAEs used as a pH-responsive coating material in sensor applications. Here we present an investigation of the synthesis, curing behavior and swell tests of AOBAEs. AOBAEs were synthesized from reacting an excess of asymmetric diacrylates with piperazine without the use of any solvents. They were then cross-linked to an insoluble network by UV-curing. Nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopy were used to characterize the AOBAEs. NMR was used to clarify the irregular structure of the AOBAE. FTIR was used to monitor the effects of UV-curing dose and air exposure on monomer conversion during curing. An interferometric technique was used to monitor the swelling behavior of the coating in response to pH variations. Swell experiments showed that the AOBAE also responded to pH variations after polymerization. Therefore, AOBAE is an interesting class of material with potential use as a pH responsive coating in optical-and printed electronics pH-sensors applications.

  • 41.
    Li, Xiaotian
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Sidén, Johan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Schön, Thomas
    Atlas Ind Print & Motala AB, Motala.
    Soldering surface mount components on screen printed Ag patterns on paper and Polyimide substrates for hybrid printed electronics2018In: Flexible and Printed Electronics, ISSN 2058-8585, Vol. 3, no 1, article id 015003Article in journal (Refereed)
    Abstract [en]

    The development of printed electronics on flexible substrates is increasing rapidly, where the main benefit is large area and low cost. However, the functionality and performance of printed circuits cannot compete with standard silicon based microprocessors or integrated circuits, though the functionality and performance of printed circuits are increasing. Therefore, in this work we investigate the possibilities of using Sn42/Bi57.6/Ag0.4 low-temperature solder paste together with a reflow solder oven and hot air solder iron to mount regular SMD components on screen-printed silver tracks. It was found that it is possible to solder standard Si SMD pack-ages onto screen-printed Ag ink tracks on paper substrate, however, the component bonding strength to Polyimide were not satisfactory. The resistance of the solder joints was found to be no more than 240 mΩ. The bond strength was found to be higher using the manual hot air sol-der iron than the reflow solder oven. Bending tests show that the bonding strength is higher for the hot air soldered components. Reference samples on FR-4 based copper PCB show a bond strength ~10 times higher but we conclude that it is possible to solder regular Si SMD components onto Ag-printed conductors on paper substrate with good results. The process could be used to fabricate hybrid printed electronics on a standard solder process line.

  • 42.
    Li, Xiaotian
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Sidén, Johan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Flexible Circuits and Materials for Large-Area UHF RFID Reader Antenna Systems2018In: IOP Flexible and Printed Electronics, ISSN 2058-8585, Vol. 3, no 1, article id 015005Article in journal (Refereed)
    Abstract [en]

    RF electronics commonly incorporate PCB-materials with low loss tangents, which limits its use for large-area applications due to its high cost. This work verifies one alternative solution how non-conventional flexible circuit materials can be used to manufacture large functional surfaces for RF-based applications. Laminated Al foils are used for conducting layers and a flexible foam material is used for substrate. An RFID reader system has been developed to demonstrate the functionality, comprising of eight microstrip antenna elements arranged in a SP4T switching structure covering an area of 1.2 m × 0.6 m. Each antenna element is individually addressable with aid of distributed digital and analogue multiplexer circuitry and it is shown how these components can be soldered directly onto the Al conductors. The constructed system shows good RF performance, both with regards to the materials and to the interconnections with the distributed multiplexer circuitry. It can perform far-field RFID tag reading above its surface without dead zones and the system characterization implies that the concept can be further expanded to cover geometrical areas up to 1000 square meters.

  • 43.
    Li, Xiaotian
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Sidén, Johan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    UHF RFID Shelf Reader Antennas for Object Classification and Distance Estimation of Non-Tagged RFID Objects2017In: 2017 Ieee International Conference On Microwaves, Antennas, Communications And Electronic Systems (Comcas), IEEE, 2017, p. 289-292Conference paper (Refereed)
    Abstract [en]

    RFID readers serve the obvious role of extracting information from RFID tagged objects. Objects without RFID tags or objects with tags that for some reason are unreadable will not be noted at all when positioned within an RFID reader antenna's interrogation zone. In this paper, we investigate how UHF RFID reader systems for smart shelf applications could also be used for classification and distance estimation of non RFID tagged objects, if the reader modules provide access to antenna S-parameters. The investigation is performed with an inset fed microstrip antenna where objects of different materials are positioned at different heights above the antenna. It is shown how objects are detected and classified in terms of their materialistic properties through S-parameter analysis and how the distance from the antenna to the object could be estimated.

  • 44.
    Li, Xiaotian
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Sidén, Johan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Schön, Thomas
    Atlas Industrial Print i Motala AB.
    A Paper-Based Screen Printed HF RFID Reader Antenna System2018In: IEEE Journal of Radio Frequency Identification, ISSN 2469-729X, Vol. 2, no 3, p. 118-126Article in journal (Refereed)
    Abstract [en]

    Screen printing is a stencil process where conductive inks are patterned onto substrates through a fine mesh of threads. Nowadays, screen printing can be used to print RFID antenna structures onto flexible and ultra-low-cost substrates such as pa-per. In this manuscript, we present an HF RFID reader antenna system, operating at 13.56 MHz, using screen printed Ag particle ink as conductor and using HP photo paper as substrate. The proposed antenna system comprises four loop antenna elements, matched to 50 Ω, and one I2C addressed SP4T multiplexer circuitry, controlled through an exterior embedded system. The geometries, designs and characterizations of the antenna system are described in the manuscript in details. Measurement results show that the antenna system has low power reflections and a suitable Q factor. It has a maximum 11.1 cm RFID tag read range at an antenna system input power of 33 dBm. 2D RFID tag positioning can be enabled by utilizing the RFID tag interrogation zones formed by the four loop antenna elements. In addition, a parametric study is carried out to investigate the effect of loop antenna element DC resistance on the antenna element performance. It can be concluded that the proposed method can be used to create low-cost and large-area HF RFID reader antenna systems.

  • 45. Manuilskiy, Analoliy
    et al.
    Andersson, Henrik
    Thungström, Göran
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    New concept of compact optical Fourier-Transform spectrometer2006In: 2006 IEEE SENSORS, VOLS 1-3, IEEE , 2006, p. 408-411Conference paper (Refereed)
    Abstract [en]

    Here is presented a new concept of a compact optical Fourier-transform spectrometer (FT) working in a wide spectral range in real time and containing no moving parts. Most of the existing FT spectrometers consist of optics to create an image of the interference pattern on the detector plane. The concept presented here does not require these optical components because interferometer consists of multi channel Fabry Perot interferometer with stepped or gradually changing thickness attached directly to the detector array or detector matrix. As a result this allows complete integration of the interferometer with the detector together to one of the main spectrometer units. Two types of these spectrometers were simulated and experimentally tested. The first type with the wedge interferometer is suitable for analysis of optical radiation with partially coherent radiation and exhibits higher resolution and response to coherent radiation and lower response for non coherent radiation. Second one with cylindrically shaped interferometer suitable for spectroscopy with white sources shows lower spectral resolution. Both types of the spectrometers were tested from 0.6µm to 2µm with a 256pixels extended InGaAs array detector.

  • 46.
    Manuilskiy, Anatoliy
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Thungström, Göran
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Compact Multi Channel Optical Fourier Spectrometer2006In: Proceedings of SPIE - The International Society for Optical Engineering / [ed] Ronald G. Driggers, David A. Huckridge, SPIE - International Society for Optical Engineering, 2006, Vol. 6395, p. U34-U43, article id 639504Conference paper (Refereed)
    Abstract [en]

    In this work are shown the principle, first experimental results and a model design of a new type of multi channel Fourier transform (FT) spectrometer for visible (VIS) and infrared (IR) region operating in real time. The main principle of this spectrometer is that measured collected and collimated optical radiation passes through a linear array or matrix of optical Fabry-Perot interferometers. Each interferometer is placed in front of and close to each element of the array detector. By processing the signal the spectrum of the optical radiation can be extracted. This design does not require intermediate optics between interferometer and array detector and allows for a reliable and extremely compact construction. Production cost can be low when a simple wedge type interferometer is integrated with existing array or matrix detectors, e.g. CCD camera. One other benefit is that the shape of the interferometer determines whether the spectrometer is suitable for measuring wide spectra radiation or has the ability to discriminate optical coherent radiation. Experimental results achieved for VIS and NIR range of spectra are promising. The principals of this design can be used for a variety of applications besides as a spectrometer. For example warning systems for lasers and restricted coherency sources and also filtering of optical signals and for measuring the spectral content working in a wide spectral range.

  • 47. Manuilskiy, Anatoliy
    et al.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Thungström, Göran
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Multi Channel Array Interferometer-Fourier Spectrometer2006In: 2006 Northern Optics Conference Proceedings, New York: IEEE , 2006, p. 1-6Conference paper (Refereed)
    Abstract [en]

    The characterization and design of a Fourier transform spectrometer, which enables the integration of a multi channel interferometer with a detector unit in order to create a compact device is presented in this paper. It operates within a wide spectral range from visible to NIR, contains no moving parts and is resistible to mechanical and climatic conditions. Such a design with an array or matrix detector can be used for spectroscopy with a partially coherent or white optical source depending on the shape of the optical interferometer. A reasonable spectral resolution of the order of 20-50 cm-1 can be achieved over a 1 µm wavelength range when using a 512 pixel detector array. A design model for characterization of the quasi integrated device, where a multi channel interferometer was mechanically attached and which contained a gap to the detector elements, was used. The experimental results are promising and suggest a variety of different directions for the development and application of these types of integrated spectrometers.

  • 48.
    Maslik, Jan
    et al.
    Tomas Bata University in Zlin, Czech Republic.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Forsberg, Viviane
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Engholm, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Zhang, Renyun
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    PEDOT:PSS temperature sensor ink-jet printed on paper substrate2018In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 13, article id C12010Article, review/survey (Refereed)
    Abstract [en]

    In this work we present an ink-jet printed temperature sensor consisting of PEDOT:PSSprinted on paper suitable for packaging, flexible electronics and other printed applications. Thesubstrate showed to have a large influence on both the resistance aswell as the temperature sensitivityof the PEDOT:PSS ink. This effect is most likely due to NaCl content in the photo paper coating,which reacts with the PEDOT:PSS. The temperature coefficient of a prepared device of  α= -0.030 relative to room temperature (22°C) was measured, which is higher than compared to for exampleSilicon α = -0.075.

  • 49.
    Mazlik, Jan
    et al.
    Tomas Bata University.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Forsberg, Viviane
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Engholm, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Zhang, Renyun
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Temperature sensor based on PEDOT: PSS ink-jet printed on paper substrate2018Conference paper (Refereed)
    Abstract [en]

    Printed electronics is rapidly developing, where more and more components are printable. High speed roll-to-roll processesare preferred for low cost production of flexible electronics. Often, the substrates used for printed electronics are some typeof plastic such as PET or Kapton. An alternative to plastic is to use paper substrate that has the benefits of beingenvironmentally friendly, recyclable and renewable. Paper is also the material of choice for packages of various goods.In this work we have developed an ink-jet printable temperature sensor, a thermistor, consisting ofpoly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)( PEDOT:PSS) on paper substrate. The starting material is acommercial PEDOT:PSS ink-jet ink (Orgacon IJ-1005, Agfa). This ink was then modified to increase the thermal sensitivityby addition of the co-solvents Dimethyl sulfoxide (DMSO) and Polyethylene glycol (PEG) in different quantities. DMSO hasbeen shown to increase the conductance by arranging the PEDOT into more conductive pathways and by removing PSS[1] and PEG to increase the carrier density and mobility [2].The sensors consisted of modified PEDOT:PSS lines printed on photo-paper substrate between contacts printed usingsilver nano-particle ink. The line widths were varied from one pixel, corresponding to one pass of one nozzle up-to 20pixels. The linewidths were then measured to be from 45 μm up-to 450 μm. The thickness of the sensor was also varied asone, two or three printed layers. The characterization as a temperature sensor was performed by using a setup consistingof a Peltier cooler and a heating element to step the temperature. As a reference a PT-100 element fixed to the surface ofthe cooler/heater was used.An increase in resistance from 30.5 MΩ to 85 MΩ, corresponding to a change of 2.8 times, were measured when thetemperature were changed from 22 °C to -12 °C as can be seen in the figure. This gives a ΔR/ΔT of 0.093.Such a printed sensor can be used for applications where a low cost, printable solution is needed, such as printed directlyon packages, for environmental monitoring and similar.[1] C.S. Pathak, J.P. Singh, R. Singh, Effect of dimethyl sulfoxide on the electrical properties of PEDOT:PSS/ n-Siheterojunction diodes, Current Applied Physics, 15, (2015), 528-534[2] Yow-Jon Lin, Wei-Shih Ni and Jhe-You Lee, Effect of incorporation of ethylene glycol into PEDOT:PSS on electronphonon coupling and conductivity, Journal of Applied Physics 117, (2015), 215501

  • 50.
    Nilsson, Hans-Erik
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Manuilskiy, Anatoliy
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Unander, Tomas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Hammarling, Krister
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Sidén, Johan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Gulliksson, Mikael
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Printed write once and read many sensor memories in smart packaging applications2011In: IEEE Sensors Journal, ISSN 1530-437X, E-ISSN 1558-1748, Vol. 11, no 9, p. 1759-1767Article in journal (Refereed)
    Abstract [en]

    A horizontal printed Write Once Read Many (WORM) resistive memory has been developed for use in wireless sensortags targeting single event detection in smart packaging applications. The WORM memory can be programmed using a 1.5 V printedbattery. An alternative programming method is to use chemical sintering which allows the development of exposure-time triggeredsingle event tags that can be accessed wirelessly. The new WORM memory has very low losses in the ON-state which allows directintegration into antenna structures.A sensor tag that utilizes the WORM memory functionality and the well established Electronic Article Surveillance (EAS)communication standard has been outlined. Both active and fully passive sensor tag solutions have been proposed.The role of printed electronics in smart packaging applications has been reviewed and discussed. Important enabling factors forthe future development have been highlighted, such as the need for hierarchical design and test tools, better printed interconnecttechnologies as well as better components that allow communication with existing information and communication technology (ICT)standards. This is illustrated and underlined by the presented smart packaging concept demonstrators.

12 1 - 50 of 69
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf