Mid Sweden University

miun.sePublications
Change search
Refine search result
12 1 - 50 of 55
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Alecrim, Viviane
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Zhang, Renyun
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Hummelgård, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Andres, Britta
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Dahlström, Christina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Norgren, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Andersson, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Exfoliated Layered Materials for Digital Fabrication2015In: NIP & Digital Fabrication Conference, 2015, Vol. 1, p. 192-194Conference paper (Refereed)
    Abstract [en]

    We introduced an exfoliation method of MoS2 in a 3% solution of sodium dodecyl surfactant at high concentration (i.e. 2 g/L). The bulk MoS2 was thinned by mechanical exfoliation between sand papers and the resulting powder was used to prepare dispersions by liquid exfoliation through probe sonication. The resulting dispersion consisted of very thin MoS2 nanosheets in surfactant solution with average lateral size around 126 nm. This may be interesting for applications in inkjet printed electronics.

  • 2.
    Alimohammadzadeh, Rana
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Osong, Sinke H.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Abbaszad Rafi, Abdolrahim
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Dahlström, Christina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Cordova, Armando
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Cellulosic Materials: Sustainable Surface Engineering of Lignocellulose and Cellulose by Synergistic Combination of Metal-Free Catalysis and Polyelectrolyte Complexes2019In: Global Challenges, E-ISSN 2056-6646, Vol. 3, no 7, article id 1970071Article in journal (Refereed)
    Abstract [en]

    In article number 1900018 by Armando Cordova and co‐workers, the novel combination of metal‐free catalysis and renewable polyelectrolyte complexes leads to synergistic surface engineering of lignocellulose and cellulose fibers derived from wood. This sustainable strategy allows for improvement and introduction of important properties such as strength (up to 100% in Z‐strength), water resistance, and fluorescence to the renewable fibers and cellulosic materials under eco‐friendly conditions.

  • 3.
    Alimohammadzadeh, Rana
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Osong, Sinke H.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Abbaszad Rafi, Abdolrahim
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Dahlström, Christina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Cordova, Armando
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Sustainable Surface Engineering of Lignocellulose and Cellulose by Synergistic Combination of Metal‐Free Catalysis and Polyelectrolyte Complexes2019In: Global Challenges, E-ISSN 2056-6646, Vol. 3, article id 1900018Article in journal (Refereed)
    Abstract [en]

    A sustainable strategy for synergistic surface engineering of lignocellulose and cellulose fibers derived from wood by synergistic combination of metal‐free catalysis and renewable polyelectrolyte (PE) complexes is disclosed. The strategy allows for improvement and introduction of important properties such as strength, water resistance, and fluorescence to the renewable fibers and cellulosic materials. For example, the “green” surface engineering significantly increases the strength properties (up to 100% in Z‐strength) of chemi‐thermomechanical pulp (CTMP) and bleached sulphite pulp (BSP)‐derived sheets. Next, performing an organocatalytic silylation with a nontoxic organic acid makes the corresponding lignocellulose and cellulose sheets hydrophobic. A selective color modification of polysaccharides is developed by combining metal‐free catalysis and thiol‐ene click chemistry. Next, fluorescent PE complexes based on cationic starch (CS) and carboxymethylcellulose (CMC) are prepared and used for modification of CTMP or BSP in the presence of a metal‐free catalyst. Laser‐scanning confocal microscopy reveals that the PE‐strength additive is evenly distributed on the CTMP and heterogeneously on the BSP. The fluorescent CS distribution on the CTMP follows the lignin distribution of the lignocellulosic fibers.

    Download full text (pdf)
    fulltext
  • 4.
    Alimohammadzadeh, Rana
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Osong, Sinke H.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Dahlström, Christina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Cordova, Armando
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Scalable Improvement of the Strength Properties of Chemimechanical Pulp Fibers by Eco-Friendly Catalysis2018In: IMPC 2018, Trondheim, Norway, 2018Conference paper (Refereed)
    Abstract [en]

    The sustainable improvement of the strength properties of chemimechanical pulp by eco-friendlycatalysis is disclosed. Significant research activities have been performed on the use of cationic starchand polyelectrolyte complexes for improving the strength properties of cellulose-based materials. Herewe apply an eco-friendly strategy based on catalysis for significantly improving the strength propertiesof sheets made from chemimechanical pulp (CTMP) and bleeched sulphite pulp (BSP) using sustainablepolyelectrolyte complexes as the strength additives and organocatalysis. This surface engineeringstrategy significantly increased the strength properties of the assembled sheets (up to 100% in the caseof Z-strength). We also developed a catalytic selective colour marking of the cationic potato starch (CS)and carboxymethylcellulose (CMC) in order to elucidated how the specific strength additives aredistributed on the sheets. It revealed that the strength additives were more evenly distributed on thesheets made from CTMP as compared to BSP sheets. This is most likely attributed to the presence oflignin in the former lignocellulosic material. It also contributes to the increase in strength (up to 100%,Z-strength) for the CTMP derived sheets. The selective colour marking method also revealed that morestrength additives had been bound to the pulps in the presence of the catalyst.

  • 5.
    Andres, Britta
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Dahlström, Christina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Blomquist, Nicklas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Norgren, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Cellulose binders for electric double-layer capacitor electrodes: The influence of cellulose quality on electrical properties2018In: Materials & design, ISSN 0264-1275, E-ISSN 1873-4197, Vol. 141, p. 342-349Article in journal (Refereed)
    Abstract [en]

    Cellulose derivatives are widely used as binders and dispersing agents in different applications. Binders composed of cellulose are an environmentally friendly alternative to oil-based polymer binding agents. Previously, we reported the use of cellulose nanofibers (CNFs) as binders in electrodes for electric double-layer capacitors (EDLCs). In addition to good mechanical stability, we demonstrated that CNFs enhanced the electrical performance of the electrodes. However, cellulose fibers can cover a broad range of length scales, and the quality requirements from an electrode perspective have not been thoroughly investigated. To evaluate the influence of fiber quality on electrode properties, we tested seven samples with different fiber dimensions that are based on the same kraft pulp. To capture the length scale from fibers to nanofibrils, we evaluated the performance of the untreated kraft pulp, refined fibers, microfibrillated cellulose (MFC) and CNFs. Electrodes with kraft pulp or refined fibers showed the lowest electrical resistivity. The specific capacitances of all EDLCs were surprisingly similar, but slightly lower for the EDLC with CNFs. The same electrode sample with CNFs also showed a slightly higher equivalent series resistance (ESR), compared to those of the other EDLCs. Graphite dispersions with MFC showed the best dispersion stability. 

    Download full text (pdf)
    fulltext
  • 6.
    Andres, Britta
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Dahlström, Christina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Engström, Ann-Christine
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Forsberg, Sven
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Blomquist, Nicklas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Cellulose-based binder systems for electrochemical electrodes2015Conference paper (Other academic)
  • 7.
    Andres, Britta
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Engström, Ann-Christine
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Blomquist, Nicklas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Forsberg, Sven
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Dahlström, Christina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Electrode Mass Balancing as an Inexpensive and Simple Method to Increase the Capacitance of Electric Double-Layer Capacitors2016In: PLOS ONE, E-ISSN 1932-6203, Vol. 11, no 9, p. 1-12, article id e0163146Article in journal (Refereed)
    Abstract [en]

    Symmetric electric double-layer capacitors (EDLCs) have equal masses of the same active material in both electrodes. However, having equal electrode masses may prevent the EDLC to have the largest possible specific capacitance if the sizes of the hydrated anions and cations in the electrolyte differ because the electrodes and the electrolyte may not be completely utilized. Here we demonstrate how this issue can be resolved by mass balancing. If the electrode masses are adjusted according to the size of the ions, one can easily increase an EDLC's specific capacitance. To that end, we performed galvanostatic cycling to measure the capacitances of symmetric EDLCs with different electrode mass ratios using four aqueous electrolytes-Na2SO4, H2SO4, NaOH, and KOH (all with a concentration of 1 M)-and compared these to the theoretical optimal electrode mass ratio that we calculated using the sizes of the hydrated ions. Both the theoretical and experimental values revealed lower-than-1 optimal electrode ratios for all electrolytes except KOH. The largest increase in capacitance was obtained for EDLCs with NaOH as electrolyte. Specifically, we demonstrate an increase of the specific capacitance by 8.6% by adjusting the electrode mass ratio from 1 to 0.86. Our findings demonstrate that electrode mass balancing is a simple and inexpensive method to increase the capacitance of EDLCs. Furthermore, our results imply that one can reduce the amount of unused material in EDLCs and thus decrease their weight, volume and cost.

    Download full text (pdf)
    fulltext
  • 8.
    Andres, Britta
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Forsberg, Sven
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Dahlström, Christina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Blomquist, Nicklas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Enhanced electrical and mechanical properties of nanographite electrodes for supercapacitors by addition of nanofibrillated cellulose2014In: Physica status solidi. B, Basic research, ISSN 0370-1972, E-ISSN 1521-3951, Vol. 251, no 12, p. 2581-2586Article in journal (Refereed)
    Abstract [en]

    Graphene and porous carbon materials are widely used as electrodes in supercapacitors. In order to form mechanically stable electrodes, binders can be added to the conducting electrode material. However, most bindersdegrade the electrical performance of the electrodes. Here we show that by using nanofibrillated cellulose(NFC) as binder the electrical properties, such as capacitance, were enhanced. The highest capacitance was measured at a NFC content of approximately 10% in ratio to the total amount of active material. NFC is a good ionconductor and improves the access of ions in the electrodes. Thus, electrodes made of a mixture of nanographite and NFC achieved larger capacitances in supercapacitors than electrodes with nanographite only. In addition to electrical properties, NFC enhanced the mechanical stability and wet strength of the electrodes significantly. Furthermore, NFC stabilized the aqueous nanographite dispersions, which improved the processability. Galvanostatic cycling was performed and an initial transient behaviour of the supercapacitors during the first cycles was observed. However, stabilized supercapacitors showed efficiencies of 98–100 %.

  • 9.
    Blomquist, Nicklas
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Alimadadi, Majid
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Hummelgård, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Dahlström, Christina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Olsen, Martin
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Effects of Geometry on Large-scale Tube-shear Exfoliation of Multilayer Graphene and Nanographite in Water2019In: Scientific Reports, E-ISSN 2045-2322, Vol. 9, no 1, article id 8966Article in journal (Refereed)
    Abstract [en]

    Industrially scalable methods for the production of graphene and other nanographites are needed to achieve cost-efficient commercial products. At present, there are several available routes for the production of these materials but few allow large-scale manufacturing and environmentally friendly low-cost solvents are rarely used. We have previously demonstrated a scalable and low-cost industrial route to produce nanographites by tube-shearing in water suspensions. However, for a deeper understanding of the exfoliation mechanism, how and where the actual exfoliation occurs must be known. This study investigates the effect of shear zone geometry, straight and helical coil tubes, on this system based on both numerical simulation and experimental data. The results show that the helical coil tube achieves a more efficient exfoliation with smaller and thinner flakes than the straight version. Furthermore, only the local wall shear stress in the turbulent flow is sufficient for exfoliation since the laminar flow contribution is well below the needed range, indicating that exfoliation occurs at the tube walls. This explains the exfoliation mechanism of water-based tube-shear exfoliation, which is needed to achieve scaling to industrial levels of few-layer graphene with known and consequent quality.

    Download full text (pdf)
    fulltext
  • 10.
    Blomquist, Nicklas
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Koppolu, R.
    Dahlström, Christina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Toivakka, M.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Influence of Substrate in Slot-die Coating of Nanographite/Nanocelluose Electrodes for SupercapacitorsManuscript (preprint) (Other academic)
  • 11.
    Blomquist, Nicklas
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Koppolu, Rajesh
    Åbo Akademi.
    Dahlström, Christina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Toivakka, Martti
    Åbo Akademi.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Influence of Substrate in Roll-to-roll Coated Nanographite Electrodes for Metal-free Supercapacitors2020In: Scientific Reports, E-ISSN 2045-2322, Vol. 10, no 1, article id 5282Article in journal (Refereed)
    Abstract [en]

    Due to the high electric conductivity and large surface area of nanographites, such as graphene and graphite nanoplatlets, these materials have gained a large interest for use in energy storage devices. However, due to the thin flake geometry, the viscosity of aqueous suspensions containing these materials is high even at low solids contents. This together with the use of high viscosity bio-based binders makes it challenging to coat in a roll-to-roll process with sufficient coating thickness. Electrode materials for commercial energy storage devices are often suspended by organic solvents at high solids contents and coated onto metal foils used as current-collectors. Another interesting approach is to coat the electrode onto the separator, to enable large-scale production of flat cell stacks. Here, we demonstrate an alternative, water-based approach that utilize slot-die coating to coat aqueous nanographite suspension with nanocellulose binder onto the paper separator, and onto the current collector as reference, in aqueous metal-free supercapacitors. The results show that the difference in device equivalent series resistance (ESR) due to interfacial resistance between electrode and current collector was much lower than expected and thus similar or lower compared to other studies with a aqueous supercapacitors. This indicates that electrode coated paper separator substrates could be a promising approach and a possible route for manufacturing of low-cost, environmentally friendly and metal-free energy storage devices. 

    Download full text (pdf)
    fulltext
  • 12.
    Dahlström, Christina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Quantitative microscopy of coating uniformity2012Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Print quality demands for coated papers are steadily growing, and achieving coating uniformity is crucial for high image sharpness, colour fidelity, and print uniformity. Coating uniformity may be divided into two scales: coating thickness uniformity and coating microstructure uniformity, the latter of which includes pigment, pore and binder distributions within the coating layer. This thesis concerns the investigation of both types of coating uniformity by using an approach of quantitative microscopy.First, coating thickness uniformity was analysed by using scanning electron microscope (SEM) images of paper cross sections, and the relationships between local coating thickness variations and the variations of underlying base sheet structures were determined. Special attention was given to the effect of length scales on the coating thickness vs. base sheet structure relationships.The experimental results showed that coating thickness had a strong correlation with surface height (profile) of base sheet at a small length scale. However, at a large length scale, it was mass density of base sheet (formation) that had the strongest correlation with coating thickness. This result explains well the discrepancies found in the literature for the relationship between coating thickness variation and base sheet structure variations. The total variance of coating thickness, however, was dominated by the surface height variation in the small scale, which explained around 50% of the variation. Autocorrelation analyses were further performed for the same data set. The autocorrelation functions showed a close resemblance of the one for a random shot process with a correlation length in the order of fibre width. All these results suggest that coating thickness variations are the result of random deposition of particles with the correlation length determined by the base sheet surface textures, such as fibre width.In order to obtain fundamental understandings of the random deposition processes on a rough surface, such as in paper, a generic particle deposition model was developed, and systematic analyses were performed for the effects of particle size, coat weight (average number of particles), levelling, and system size on coating thickness variation. The results showed that coating thickness variation3grows with coat weight, but beyond a certain coat weight, it reaches a plateau value. A scaling analysis yielded a universal relationship between coating thickness variation and the above mentioned variables. The correlation length of coating thickness was found to be determined by average coat weight and the state of underlying surfaces. For a rough surface at relatively low coat weight, the correlation length was typically in the range of fibre width, as was also observed experimentally.Non-uniformities within the coating layer, such as porosity variations and binder distributions, are investigated by using a newly developed method: field emission scanning electron microscopy (FESEM) in combination with argon ion beam milling technique. The combination of these two techniques produced extremely high quality images with very few artefacts, which are particularly suited for quantitative analyses of coating structures. A new evaluation method was also developed by using marker-controlled watershed segmentation (MCWS) of the secondary electron images (SEI).The high resolution imaging revealed that binder enrichment, a long disputed subject in the area, is present in a thin layer of a 500 nm thickness both at the coating surface and at the base sheet/coating interface. It was also found that the binders almost exclusively fill up the small pores, whereas the larger pores are mainly empty or depleted of binder.

    Download full text (pdf)
    Doctoral Thesis 129
  • 13.
    Dahlström, Christina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Sample Preparation Using Argon Ion Beam Milling2013In: Argon: Production, Characteristics and Applications / [ed] Bogos Nubar Sismanoglu, Homero Santiago Maciel, Marija Radmilovic-Radjenovic, Rodrigo Savio Pessoa (Physics Department, Lab of Optics and Spectroscopy, Lab of Plasmas and Processes and Lab of Mechanics, Heath and Waves, Technological Institute of Aeronaut, Hauppauge, NY: Nova Science Publishers, Inc., 2013, p. 223-240Chapter in book (Other academic)
    Abstract [en]

    Surface and cross section analysis can provide important information on material properties. It has, however, been difficult to characterise the internal structure at a micro scale using cross sections prepared with conventional methods, such as e.g. mechanical grinding and polishing, because these procedures can damage the surface and introduce artefacts. A few years ago, a new precision argon ion beam cross section polisher was shown to be a suitable sample preparation technique for microstructure characterisation. It produces high quality cross sections free from artefacts and distortions. This technique can be used for cross section preparation of a wide variety of materials including composites, metals, ceramics and polymers. Argon ion beam milling can also be used in combination with focused ion beam (FIB) as a final step to remove FIB-damaged layers before nano- and microstructure characterisation in high resolution transmission electron microscopy (HRTEM).

  • 14.
    Dahlström, Christina
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences, Engineering and Mathematics.
    Allem, Rafik
    FPInnovations, Pointe Claire, PQ, Canada.
    Uesaka, Tetsu
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences, Engineering and Mathematics.
    New Method for Characterizing Paper Coating Structures Using Argon Ion Beam Milling and Field Emission Scanning Electron Microscopy2011In: Journal of Microscopy, ISSN 0022-2720, E-ISSN 1365-2818, Vol. 241, no 2, p. 179-187Article in journal (Refereed)
    Abstract [en]

    We have developed a new method for characterizing microstructures of paper coating using argon ion beam milling technique and field emission scanning electron microscopy. The combination of these two techniques produces extremely high-quality images with very few artefacts, which are particularly suited for quantitative analyses of coating structures. A new evaluation method has been developed by using marker-controlled watershed segmentation technique of the secondary electron images. The high-quality secondary electron images with well-defined pores makes it possible to use this semi-automatic segmentation method. One advantage of using secondary electron images instead of backscattered electron images is being able to avoid possible overestimation of the porosity because of the signal depth. A comparison was made between the new method and the conventional method using greyscale histogram thresholding of backscattered electron images. The results showed that the conventional method overestimated the pore area by 20% and detected around 5% more pores than the new method. As examples of the application of the new method, we have investigated the distributions of coating binders, and the relationship between local coating porosity and base sheet structures. The technique revealed, for the first time with direct evidence, the long-suspected coating non-uniformity, i.e. binder migration, and the correlation between coating porosity versus base sheet mass density, in a straightforward way.

  • 15.
    Dahlström, Christina
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Andres, Britta
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Faria, Gregorio C
    Department of Materials Science and Engineering, Stanford University, São Carlos Physics Institute, University of São Paulo.
    Engström, Ann-Christine
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Duong, Duc, T.
    Department of Materials Science and Engineering, Stanford University.
    Salleo, Alberto
    Department of Materials Science and Engineering, Stanford University.
    Structural Change of Cellulose Nanofibers in Supercapacitor Electrodes during Galvanostatic Cycling2015Conference paper (Other academic)
    Abstract [en]

    Graphene and other carbon-based materials are often used as electrodes in electrochemical double-layer supercapacitors (EDLCs), due to their ability to store electrical energy. Cellulose nanofibers (CNF) have been proven to be suitable as a dispersion agent and binder in graphite based electrodes for supercapacitor applications, especially due to their capability to improve the wet and dry strength of the electrode. At the same time the capacitance is maintained or even increased with addition of CNF. It is reasonable to believe that the addition of CNF manages to stabilize smaller graphite particles in the dispersion which results in larger internal surface area in the dry material.

     

    When the amount of CNF is around 20 wt%, (in ratio to the total mass of active material), both scanning electron microscopy and XPS analysis showed that the surface is almost completely covered with the nano-cellulose. Even with this isolating layer of cellulose it is interesting to note that the capacitance is as high as 90 F/g, compared to around 50 F/g for the lowest CNF amount of 5 wt%. However, by applying voltage pulses during the galvanostatic cycling procedure for capacitance measurements, an initial transient behavior is observed during the first cycles. Therefore the capacitance is calculated after 4000 charge and discharge curves, when curves are completely stabilized. We found that the electrode structure changes significantly during this capacitance measurement and already after a short pulse of 10 s and 0.3 V the structural change is noticeable. After cycling for 24 hours, a completely new structure emerges where large fiber-like structures are developed with diameters around 20-30 µm. The galvanostatic cycling procedure has created fiber-like cellulose structures around 1000 times larger than the initial size of the nano-cellulose.

     

    Structural properties of the electrode have often been related to the electronic properties in the supercapacitor. Our result shows that due to this change in the CNF structure, the electrode properties after galvanostatic cycling are indeed also of interest to study. This structural change might be critical to device performance and durability.    

  • 16.
    Dahlström, Christina
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Andres, Britta
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Forsberg, Sven
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Coating Uniformity and its Effect on Supercapacitor Capacitance2014Conference paper (Other academic)
  • 17.
    Dahlström, Christina
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Mathematics, and Science Education (2023-).
    Duan, Ran
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Mathematics, and Science Education (2023-). Tetra Pak, Lund.
    Eivazi, Alireza
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Mathematics, and Science Education (2023-).
    Magalhães, S.
    Alves, L.
    Engholm, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Mathematics, and Science Education (2023-).
    Svanedal, Ida
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Mathematics, and Science Education (2023-).
    Edlund, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Mathematics, and Science Education (2023-).
    Medronho, Bruno
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Mathematics, and Science Education (2023-).
    Norgren, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Mathematics, and Science Education (2023-).
    Stacking self-gluing cellulose II films: A facile strategy for the formation of novel all-cellulose laminates2024In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 344, article id 122523Article in journal (Refereed)
    Abstract [en]

    Cellulose laminates represent a remarkable convergence of natural materials and modern engineering, offering a wide range of versatile applications in sustainable packaging, construction, and advanced materials. In this study, novel all-cellulose laminates are developed using an environmentally friendly approach, where freshly regenerated cellulose II films are stacked without the need for solvents (for impregnation and/or partial dissolution), chemical modifications, or resins. The structural and mechanical properties of these all-cellulose laminates were thoroughly investigated. This simple and scalable procedure results in transparent laminates with exceptional mechanical properties comparable to or even superior to common plastics, with E-modulus higher than 9 GPa for a single layer and 7 GPa for the laminates. These laminates are malleable and can be easily patterned. Depending on the number of layers, they can be thin and flexible (with just one layer) or thick and rigid (with three layers). Laminates were also doped with 10 wt% undissolved fibers without compromising their characteristics. These innovative all-cellulose laminates present a robust, eco-friendly alternative to traditional synthetic materials, thus bridging the gap between environmental responsibility and high-performance functionality. 

    Download full text (pdf)
    fulltext
  • 18.
    Dahlström, Christina
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Mathematics, and Science Education (2023-).
    Eivazi, Alireza
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Mathematics, and Science Education (2023-).
    Nejström, Malin
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Mathematics, and Science Education (2023-).
    Zhang, Renyun
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Mathematics, and Science Education (2023-).
    Pettersson, Torbjörn
    KTH.
    Iftikhar, Haider
    Aalto University, Finland.
    Rojas, Orlando J.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Mathematics, and Science Education (2023-). Aalto University, Finland; The University of British Columbia, Vancouver, Canada.
    Medronho, Bruno
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Mathematics, and Science Education (2023-). Universidade do Algarve, Portugal.
    Norgren, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Mathematics, and Science Education (2023-).
    Regenerated cellulose properties tailored for optimized triboelectric output and the effect of counter-tribolayers2024In: Cellulose, ISSN 0969-0239, E-ISSN 1572-882X, Vol. 31, no 4, p. 2047-2061Article in journal (Refereed)
    Abstract [en]

    Cellulose has shown great potential in the development of green triboelectric nanogenerators. Particularly, regenerated cellulose (R-cellulose) has shown remarkably high output power density but the structural features and key parameters that explain such superior performance remain unexplored. In this work, wood cellulose fibers were dissolved in a LiOH(aq)-based solvent to produce a series of R-cellulose films. Regeneration in different alcohols (from methanol to n-pentanol) was performed and the films’ structural features and triboelectric performance were assessed. Nonsolvents of increased hydrophobicity led to R-cellulose films with a more pronounced (1–10) diffraction peak. An open-circuit voltage (VOC) of up to ca. 260 V and a short-circuit current (ISC) of up to ca. 150 µA were measured for R-cellulose against polytetrafluoroethylene (as negative counter-layer). However, R-cellulose showed an increased VOC of 175% (from 88.1 V) against polydimethylsiloxane when increasing the alcohol hydrocarbon chain length from methanol to n-pentanol. The corresponding ISC and output power also increased by 76% (from 89.9 µA) and by 382% (from 8.8 W m–2), respectively. The higher R-cellulose hydrophilicity, combined with soft counter-tribolayer that follow the surface structures increasing the effective contact area, are the leading reasons for a superior triboelectric performance.

    Download full text (pdf)
    fulltext
  • 19.
    Dahlström, Christina
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Mathematics, and Science Education (2023-).
    Eivazihollagh, Alireza
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Mathematics, and Science Education (2023-).
    Pettersson, T
    Rojas, Orlando J.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Mathematics, and Science Education (2023-).
    Zhang, Renyun
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Mathematics, and Science Education (2023-).
    Medronho, Bruno
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Mathematics, and Science Education (2023-).
    Norgren, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Mathematics, and Science Education (2023-).
    Triboelectric Performance Of Regenerated Cellulose2023In: Book of Abstracts EPNOE 2023, Graz University of Technology , 2023, p. 116-Conference paper (Other academic)
    Abstract [en]

    Cellulose has shown great potential in the development of green triboelectric nanogenerators (TENG) [1]. Particularly, regenerated cellulose (R-cellulose) has shown remarkably high output power density but the structural features and key parameters that explain such superior performance remain unexplored. In this work, wood cellulose fibers were dissolved in a LiOH(aq)-based solvent to produce a series of R-cellulose films. Regeneration in different alcohols (from methanol to n-pentanol) was performed and the films’ structural features and triboelectric performance were assessed. Nonsolvents of increased hydrophobicity led to R-cellulose films with higher hydrophilic character; the films showed a (1- 10) diffraction peak of larger amplitude and higher apparent crystallinity. An open-circuit voltage (VOC) of up to ca. 260 V and a short-circuit current (ISC) of up to ca. 150 μA were measured for R-cellulose against polytetrafluoroethylene (as negative counter-layer). However, R-cellulose showed an increased VOC of 175% (from 88.1 V) against polydimethylsiloxane from methanol to n-pentanol. The corresponding ISC and output power also increased by 76% (from 89.9 μA) and by 382% (from 8.8 W m–2), respectively. The higher R-cellulose hydrophilicity, combined with soft counter-layer that follow the surface structures increasing the effective contact area, are the leading reasons for a superior triboelectric performance.

    [1] Zhang, R., Dahlström, C., Zou, H., Jonzon, J., Hummelgård, M., Örtegren, J., Blomquist, N., Yang, Y., Andersson, H., Olsen, M., Norgren, M., Olin, H. & Wang, Z.L. Adv. Mater. 32, 2002824, 2020; https://doi.org/10.1002/adma.202002824

  • 20.
    Dahlström, Christina
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    López Durán, V.
    KTH, Stockholm.
    Keene, S. T.
    Stanford University, Stanford, CA, United States.
    Salleo, A.
    Stanford University, Stanford, CA, United States.
    Norgren, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Wågberg, L.
    KTH, Stockholm.
    Ion conductivity through TEMPO-mediated oxidated and periodate oxidated cellulose membranes2020In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 233, article id 115829Article in journal (Refereed)
    Abstract [en]

    Cellulose in different forms is increasingly used due to sustainability aspects. Even though cellulose itself is an isolating material, it might affect ion transport in electronic applications. This effect is important to understand for instance in the design of cellulose-based supercapacitors. To test the ion conductivity through membranes made from cellulose nanofibril (CNF) materials, different electrolytes chosen with respect to the Hofmeister series were studied. The CNF samples were oxidised to three different surface charge levels via 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), and a second batch was further cross-linked by periodate oxidation to increase wet strength and stability. The outcome showed that the CNF pre-treatment and choice of electrolyte are both crucial to the ion conductivity through the membranes. Significant specific ion effects were observed for the TEMPO-oxidised CNF. Periodate oxidated CNF showed low ion conductivity for all electrolytes tested due to an inhibited swelling caused by the crosslinking reaction. © 2020 Elsevier Ltd

  • 21.
    Dahlström, Christina
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Uesaka, Tetsu
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Coating Microstructures: Binder Distributions2012In: 12th TAPPI Advanced Coating Fundamentals Symposium Proceedings, Co-located with the 16th International Coating Science and Technology Symposium, ISCST 2012, Tappi , 2012, p. 250-257Conference paper (Other academic)
    Abstract [en]

     Non-uniformities within the coating layer, such as porosity variations and binder distributions, are known to affect print uniformity and barrier properties. However, in the literature the results on coating microstructures are rather limited or sometimes conflicting.We obtained high quality images of coated paper cross sections using field emission scanning electron microscopy in combination with a new argon ion beam milling technique to directly observe and analyse the binder and pore distribution. This technique produces high quality images that allow microstructure characterisation of the coating layer.The binder distribution measurements showed that the binder is almost exclusively filling up the small pores, whereas the larger pores are mainly empty and depleted of binder.

  • 22.
    Dahlström, Christina
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Uesaka, Tetsu
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Microstructure Variations in Paper Coating: Direct Observations2012In: Industrial & Engineering Chemistry Research, ISSN 0888-5885, E-ISSN 1520-5045, Vol. 51, no 24, p. 8246-8252Article in journal (Refereed)
    Abstract [en]

    Non-uniformities in the coating layer, such as porosity variations and binder distributions, are known to affect print uniformity and barrier properties. However, in the literature the results are rather scarce or sometimes conflicting.

    We acquired high quality images of coated paper cross sections using field emission scanning electron microscopy in combination with a new argon-ion-beam milling technique to directly observe and analyse the coating microstructures in relation to underlying base sheet structures.

    The results showed that coating porosity varied with mass density of the underlying base sheet for the relatively bulky clay/GCC coating, whereas for the more compact clay coating, the effect was small. Areas with more fibres in the base sheet were more compressed by calendering, resulting in a decreased coating porosity. A unique binder enriched layer of less than 500 nm thickness was found at the coating surface as well as at the coating/base sheet interface.

  • 23.
    Dahlström, Christina
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences, Engineering and Mathematics.
    Uesaka, Tetsu
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences, Engineering and Mathematics.
    New Insights into Coating Uniformity and Base Sheet Structures2009In: Industrial & Engineering Chemistry Research, ISSN 0888-5885, E-ISSN 1520-5045, Vol. 48, no 23, p. 10472-10478Article in journal (Refereed)
    Abstract [en]

    Base sheet structures, such as surface roughness and mass density distribution (formation), have been known to affect coating uniformity. However, the literature is not necessarily consistent in determining which structure controls coating uniformity. This study employed scanning electron microscopy (SEM) and image analysis, combined with autocorrelation and frequency analyses, to investigate the fundamental mechanisms of coating and to resolve some of the controversies in the literature regarding the base sheet effects. The results showed that coating thickness variation resembles a process of random deposition with leveling. At small length scales (in the size of fiber width), leveling causes a very strong dependence of coating thickness variations on the surface profile of the base sheet, whereas at larger length scales, coating thickness variation diminishes in its intensity by the same leveling effect, but still retains a significant correlation with base sheet structure, particularly formation. Frequency analyses clearly showed that the discrepancies in the results for the base sheet effects in the literature are due to the length scales used in the experiments, that is, the sampling area and the resolution of the measurements.

  • 24.
    Dahlström, Christina
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences, Engineering and Mathematics.
    Uesaka, Tetsu
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences, Engineering and Mathematics.
    Surface Evolution of Pigment CoatingManuscript (preprint) (Other academic)
    Abstract [en]

        We studied the surface evolution of coating by using a random deposition model of particles. In order to capture the real coating structure development, we included a volume exclusion effect to represent particle-particle interaction, and a levelling effect to represent surface tension effect. In this study we investigated three cases: (1) random deposition on a flat surface, (2) random deposition on a flat surface with levelling, and (3) random deposition on a rough surface with levelling.

    When plotting in logarithmic scale, the roughness initially increased linearly with average number of particles deposited for all three cases but reached saturation after a certain amount of deposited particles. The result resembles a ballistic deposition process where agglomerates are developed over the surface due to lateral growth. Even a flat, uniform surface creates roughness during random deposition of particles.

    Autocorrelation analysis showed that the correlation length continues to increase with the number of particles deposited. The aggregated structures were easily seen in the autocorrelation function.

    Experimental and simulated data on the rough surface were compared and they were in agreement, confirming that the coating process is essentially a random process with some local correlation in the length scale of a typical fibre width. 

  • 25.
    Dahlström, Christina
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences, Engineering and Mathematics.
    Uesaka, Tetsu
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences, Engineering and Mathematics.
    Norgren, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences, Engineering and Mathematics.
    Base Sheet Structures that Control Coating Uniformity: Effects of Length Scale2008In: TAPPI Advanced Coating Fundamentals Symposium Proceedings, TAPPI Press, 2008, p. 124-133Conference paper (Refereed)
    Abstract [en]

    Characterization of the base sheet properties and coating layer properties was performed by using scanning electron microscope (SEM) images of paper cross-sections and image analysis. Frequency analysis was used to study how the base sheet properties affect coating thickness uniformity at different length scales. Samples analysed were Lightweight Coated (LWC) base sheets blade-coated on only one side with coat weights of 12 and 22 g/m2. A number of images were taken in sequence giving a total length of more than 6 mm. The results showed that the surface height variations of the base sheet control coating uniformity in the entire examined length scale, but with different mechanisms. At short wavelengths the coating mechanism was “level coating” where the coating suspension fills small pores (“levels”), whereas at longer wavelengths the coating suspension follows the surface profile and “contour coating” becomes more prevalent. In other words, the level- and contour-coatings represent the coating mechanisms in different length scales. Surface height variations can be explained by base sheet thickness only at short wavelengths, but at all other wavelengths the surface height variations were very much independent of the base sheet structure properties measured.

  • 26.
    Eivazihollagh, Alireza
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Bäckström, Joakim
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Dahlström, Christina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Carlsson, Fredrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Ibrahem, Ismail
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Edlund, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Norgren, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    One-pot synthesis of cellulose-templated copper nanoparticles with antibacterial properties2016Conference paper (Refereed)
  • 27.
    Eivazihollagh, Alireza
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Bäckström, Joakim
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Dahlström, Christina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Carlsson, Fredrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Ibrahem, Ismail
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Lindman, Björn
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Edlund, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Norgren, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    One-pot synthesis of cellulose-templated copper nanoparticles with antibacterial properties2017In: Materials letters (General ed.), ISSN 0167-577X, E-ISSN 1873-4979, Vol. 187, p. 170-172Article in journal (Refereed)
    Abstract [en]

    We report a facile in situ synthesis of spherical copper nanoparticles (NPs) templated by a gelled cellulose II matrix under alkaline aqueous reaction conditions. In under 20 min, the hybrid material could be obtained in a one-pot reaction. Field-emission scanning electron microscopy (FE-SEM) revealed that the polycrystalline NPs of 200–500 nm were well distributed in the regenerated cellulose matrix. The average Cu crystallite size was of the order of 20 nm, as estimated from both X-ray diffraction (XRD) and FE-SEM. XRD data also indicated that the composite contained up to approximately 20% Cu2O. In suspensions containing the hybrid material, growth of Escerichia coli and Staphylococcus aureus strains was inhibited by 80% and 95%, respectively, after 72 h. The synthesis procedure offers a general approach to designing various low-cost hybrid materials of almost any shape, and the concept could be extended to utilization areas such as catalysis, functional textiles, and food packaging as well as to electronic applications.

    Download full text (pdf)
    fulltext
  • 28.
    Eivazihollagh, Alireza
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Norgren, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Dahlström, Christina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Edlund, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Controlled Synthesis of Cu and Cu2O NPs and Incorporation of Octahedral Cu2O NPs in Cellulose II Films2018In: Nanomaterials, E-ISSN 2079-4991, Vol. 8, no 4, article id 238Article in journal (Refereed)
    Abstract [en]

    In this study, Cu and Cu2O nanoparticles (NPs) were synthesized through chemical reduction of soluble copper-chelating ligand complexes using formaldehyde as a reducing agent. The influence of various chelating ligands, such as ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), and a surface-active derivative of DTPA (C12-DTPA), as well as surfactants (i.e., hexadecyltrimethylammonium bromide (CTAB), dodecyltrimethylammonium chloride (DoTAC), sodium dodecyl sulfate (SDS), and dimethyldodecylamine-N-oxide (DDAO)), on morphology and the composition of produced NPs was investigated. In the absence of surfactants, spherical copper particles with polycrystalline structure could be obtained. X-ray diffraction (XRD) analysis revealed that, in the presence of EDTA, the synthesized NPs are mainly composed of Cu with a crystallite size on the order of 35 nm, while with DTPA and C12-DTPA, Cu2O is also present in the NPs as a minority phase. The addition of ionic surfactants to the copper–EDTA complex solution before reduction resulted in smaller spherical particles, mainly composed of Cu. However, when DDAO was added, pure Cu2O nano-octahedrons were formed, as verified by high-resolution scanning electron microscopy (HR-SEM) and XRD. Furthermore, a hybrid material could be successfully prepared by mixing the octahedral Cu2O NPs with cellulose dissolved in a LiOH/urea solvent system, followed by spin-coating on silica wafers. It is expected that this simple and scalable route to prepare hybrid materials could be applied to a variety of possible applications.

    Download full text (pdf)
    fulltext
  • 29.
    Faria, Gregorio Couto
    et al.
    Stanford University, Instituto de Física de São Carlos (IFSC).
    Duong, Duc Trong
    Stanford University.
    Dahlström, Christina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Rivnay, Jonathan
    École Nationale Supérieure des Mines de Saint Étienne.
    Malliaras, George
    École Nationale Supérieure des Mines de Saint Étienne.
    Owens, Roisin
    École Nationale Supérieure des Mines de Saint Étienne.
    Salleo, Alberto
    Stanford University.
    Modeling Transient Drain Current Response in Biofunctionalized Organic Electrochemical Transistors2015Conference paper (Other academic)
  • 30.
    Forsberg, Sven
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Andres, Britta
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Blomquist, Nicklas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Dahlström, Christina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Engström, Ann-Christine
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Paper-based supercapacitors2015Conference paper (Other academic)
  • 31.
    Forsberg, Sven
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Kumar, Vinay
    Åbo Akademi University.
    Engström, Ann-Christine
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Maristiina, Nurmi
    Åbo Akademi University.
    Dahlström, Christina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Martti, Toivakka
    Åbo Akademi University.
    Effect of calendering and coating formulations on conductivity in paper-based electrodes2016Conference paper (Refereed)
  • 32.
    Forsberg, Viviane
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Maslik, Jan
    Tomas Bata University.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Hummelgård, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Dahlström, Christina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Toivakka, Martti
    Åbo Akademi University.
    Koppolu, Rajesh
    Åbo Akademi University.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Norgren, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Printability of functional inkjet inks onto commercial inkjet substrates and a taylor made pigmented coated paper2018Conference paper (Other academic)
    Abstract [en]

    Printed electronics are of increasing interest. The substrates used have primarily been plastics although the interest for cellulose-based substrates is increasing due to the environmental aspect as well as cost. The requirements of substrates for electronically active inks differs from graphical inks and therefore we have investigated a custom-made pigment based coated paper and compared it to commercial photo-papers and a coated PE film.

    Our goal with the study of different substrates was to select the most suitable substrate to print water based 2D materials inkjet inks for flexible electronics.

    The discovery of graphene, a layered material achieved from the exfoliation of graphite, has resulted in the study of other materials with similar properties to cover areas where graphene could not be used due to the absence of a bandgap in the material. For example in thin film transistors (TFT) a semiconductor layer is essential to enable turn on and off the device. This semiconductor layer can be achieved using various materials but particular interest have been dedicated to abundant and cheap 2D materials such as the transition metal dichalcogenide (TMD) molybdenum disulfide (MoS2). To date, most of the dispersions based on TMDs use organic solvents or water solutions of surfactants. Previously we focus on the study of environmental friendly inks produced by liquid phase exfoliation (LPE) of MoS2 in water using cellulose stabilizers such as ethyl cellulose (EC), cellulose nanofibrils (CNF) and nanofibrilcellulose (NFC). We have study various aspects of the ink fabrication includi  ng pH range, the source of MoS2, nanosheets thickness, particle size distribution,  ink stabilizers, ink concentration, viscosity and surface tension. These inks have very low concentration requiring a number of printing passes to cover the substrate. Therefore the substrate selection is crucial as a large amount of solvent is to be absorb by the substrate. Our goal was to use such an ink to print electrodes of MoS2 into a paper substrate after substrate selection.

    Commercial photo papers, a commercial coated PE film and a tailor made multilayer pigment coated paper substrate were used for the substrate selection analysis.  We print the substrates using a DIMATIX inkjet printer with a 10 pL printing head using the distillated water waveform supplied by the printer manufacturer. The voltage used was 23V and 4 nozzles were used for the print outs. The inkjet ink used was the organic PEDOT:PSS. We printed lines ranging from 1 pixel to 20 pixels with 1, 2 and 3 printing passes. The printing quality was evaluated through measurements of the waviness of the printed lines measured after imaging the printed samples with a SEM microscope. The line width measurement was done using the software from the SEM.

    We also evaluated the structure of the coatings using SEM and topography measurements. The ink penetration through the substrates was evaluated using Raman Spectroscopy. For the pigmented coated sample we measured 4% of ink penetration through the substrate for the 1pxl printed line printed once onto the paper.  Cross-section SEM images of the printed lines were made to visualize the ink penetration into the substrate.

    Regarding the electrical conductivity of the printed samples, the differences in resistivity varying the width of the printed lines and the number of printed passes were evaluated. The resistivity of the printed electrodes was evaluated using the 2-points probe method. Before the resistivity measurements, the printed substrates were heated at 50°C and 100°C for 30 minutes in an oven.

    We choose the PEDOT:PSS ink because it is a low price ink compared to metal nanoparticles inks for printed electronics. The print outs had low resistivity at a few printing passes with no need for sintering at high temperatures. The MoS2 ink has a very high resistance at a few printing passes due to lower coverage of the substrate therefore for this ink these measurements were not possible to be made. The main pigment composition of the paper coatings of the substrates was evaluated using FT-IR and EDX, these data plus the coating structure evaluated by SEM was related to the print quality.

    The best in test papers were used to print MoS2 electrodes. After the printing tests, another step for the optimization of the MoS2 ink properties shall be carried out in future studies for better print quality. We also evaluated the surface energy of the substrates through contact angle measurements to match the surface tension of the PEDOT:PSS ink and later the MoS2 ink. Although the pigmented coated printing substrate did not show better results than the commercial photo papers and PE foil in terms of line quality, it shows the lowest resistivity and sufficient results for low cost recyclable electronics, which do not require high conductivity. Nevertheless, the substrate was very thin and it could even be used in magazines as traditional lightweight coated papers (LWC) are used but with the additional of a printed electronic feature.

  • 33.
    Forsberg, Viviane
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Zhang, Renyun
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Bäckström, Joakim
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Dahlström, Christina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Norgren, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Andres, Britta
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Liquid Exfoliation of Layered Materials in Water for Inkjet Printing2016In: Printing for Fabrication 2016: Materials, Applications, and Processes, USA: Curran Associates, Inc., 2016Conference paper (Refereed)
    Abstract [en]

    MoS2 is a layered material which is abundant and non-toxic and has been increasingly studied during the last few years as a semiconducting alternative to graphene. While most studies have been performed on single MoS2 nanosheets, for example to demonstrate high-performance electronic transistors, more work is needed to explore the use of MoS2 in printed electronics. The importance of using MoS2 as a printed electronic material could be understood by considering the several orders higher electron mobility in MoS2, even in several nanometer thick layers, compared to the organic and other materials used today. In the few studies performed so far on printing MoS2, the developed dispersions used mainly organic solvents that might be detrimental for the environment. Here, we show an environmentally friendly liquid-based exfoliation method in water where the solution was stabilized by sodium dodecyl sulfate (SDS) surfactant. The dispersions consisted of very thin MoS2 nanosheets with average lateral size of about 150 nm, surface tension of 28 mN m-1 and a shelf life of a year. Although both the concentration and viscosity was less than optimal, we were able to inkjet print the MoS2 solution on paper and on PET films, using multiple printing passes. By tuning the concentration/viscosity, this approach might lead to an environmentally friendly MoS2 ink suitable for printed electronics.

  • 34.
    Forsberg, Viviane
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Zhang, Renyun
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Bäckström, Joakim
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Dahlström, Christina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Norgren, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Andres, Britta
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Liquid Exfoliation of Layered Materials in Water for Inkjet Printing2016In: Journal of Imaging Science and Technology, ISSN 1062-3701, E-ISSN 1943-3522, Vol. 60, no 4, p. 1-7, article id 040405Article in journal (Refereed)
    Abstract [en]

    MoS2 is a layered material which is abundant and non-toxic and has been increasingly studied during the last few years as a semiconducting alternative to graphene. While most studies have been performed on single MoS2 nanosheets, for example to demonstrate high-performance electronic transistors, more work is needed to explore the use of MoS2 in printed electronics. The importance of using MoS2 as a printed electronic material could be understood by considering the several orders higher electron mobility in MoS2, even in several nanometer thick layers, compared to the organic and other materials used today. In the few studies performed so far on printing MoS2, the developed dispersions used mainly organic solvents that might be detrimental for the environment. Here, we show an environmentally friendly liquid-based exfoliation method in water where the solution was stabilized by sodium dodecyl sulfate (SDS) surfactant. The dispersions consisted of very thin MoS2 nanosheets with average lateral size of about 150 nm, surface tension of 28 mN m(-1), and a shelf life of a year. Although both the concentration and viscosity was less than optimal, we were able to inkjet print the MoS2 solution on paper and on PET films, using multiple printing passes. By tuning the concentration/viscosity, this approach might lead to an environmentally friendly MoS2 ink suitable for printed electronics.

  • 35.
    Forsberg, Viviane
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Zhang, Renyun
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Joakim, Bäckström
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Dahlström, Christina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Andres, Britta
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Norgren, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Andersson, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Hummelgård, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Exfoliated MoS2 in Water without Additives2016In: PLOS ONE, E-ISSN 1932-6203, Vol. 11, no 4, article id 0154522Article in journal (Refereed)
    Abstract [en]

    Many solution processing methods of exfoliation of layered materials have been studied during the last few years; most of them are based on organic solvents or rely on surfactants andother funtionalization agents. Pure water should be an ideal solvent, however, it is generallybelieved, based on solubility theories that stable dispersions of water could not be achievedand systematic studies are lacking. Here we describe the use of water as a solvent and thestabilization process involved therein. We introduce an exfoliation method of molybdenumdisulfide (MoS2) in pure water at high concentration (i.e., 0.14±0.01 g L−1). This was achieved by thinning the bulk MoS2by mechanical exfoliation between sand papers and dis-persing it by liquid exfoliation through probe sonication in water. We observed thin MoS2nanosheets in water characterized by TEM, AFM and SEM images. The dimensions of thenanosheets were around 200 nm, the same range obtained in organic solvents. Electropho-retic mobility measurements indicated that electrical charges may be responsible for the sta-bilization of the dispersions. A probability decay equation was proposed to compare thestability of these dispersions with the ones reported in the literature. Water can be used as asolvent to disperse nanosheets and although the stability of the dispersions may not be ashigh as in organic solvents, the present method could be employed for a number of applications where the dispersions can be produced on site and organic solvents are not desirable.

    Download full text (pdf)
    fulltext
  • 36.
    Henshaw Osong, Sinke
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Dahlström, Christina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Forsberg, Sven
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Andres, Britta
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Engstrand, Per
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Norgren, Sven
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Engström, Ann-Christine
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Development of CTMP-based nanofibrillated Cellulose /nanographite composites for paper applications2015Conference paper (Other academic)
  • 37. Koppolu, R.
    et al.
    Blomquist, Nicklas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Dahlström, Christina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Toivakka, M.
    Processability of Nanographite‐ Nanocellulose Based Electrodes for Flexible Energy Storage Applications2019Conference paper (Refereed)
  • 38.
    Koppolu, Rajesh
    et al.
    Abo Akad Univ, Lab Nat Mat Technol, Turku 20500, Finland..
    Blomquist, Nicklas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Dahlström, Christina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Toivakka, Martti
    Abo Akad Univ, Lab Nat Mat Technol, Turku 20500, Finland..
    High-Throughput Processing of Nanographite-Nanocellulose-Based Electrodes for Flexible Energy Devices2020In: Industrial & Engineering Chemistry Research, ISSN 0888-5885, E-ISSN 1520-5045, Vol. 59, no 24, p. 11232-11240Article in journal (Refereed)
    Abstract [en]

    The current work aims at understanding factors that influence the processability of nanographite-nanocellulose suspensions onto flexible substrates for production of conductive electrodes. A custom-built slot-die was used in a continuous rollto-roll process to coat the nanomaterial suspension onto substrates with varying surface smoothness, thickness, pore structure, and wet strength. The influence of a carboxymethyl cellulose (CMC) additive on suspension rheology, water release properties, and coating quality was probed. CMC addition reduced the suspension yield stress by 2 orders of magnitude and the average pore diameter of the coated electrodes by 70%. Sheet resistances of 5-9 Omega sq(-1) were obtained for the conductive coatings with a coat weight of 12-24 g m(-2). Calendering reduced the sheet resistance to 1-3 Omega sq(-1) and resistivity to as low as 12 mu Omega m. The coated electrodes were used to demonstrate a metal-free aqueous-electrolyte supercapacitor with a specific capacitance of 63 F g(-1). The results increase our understanding of continuous processing of nanographite-nanocellulose suspensions into electrodes, with potential uses in flexible, lightweight, and environmentally friendly energy devices.

    Download full text (pdf)
    fulltext
  • 39.
    Kumar, V.
    et al.
    Åbo Akad Univ, Turku, Finland.
    Forsberg, S.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Engström, A.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Nurmi, M.
    Åbo Akad Univ, Turku, Finland.
    Dahlström, Christina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Toivakka, Martti
    Åbo Akad Univ, Turku, Finland.
    Conductive carbon-nanocellulose coatings on paper2017In: TAPPI Journal, ISSN 0734-1415, Vol. 16, no 6, p. 310-311Article in journal (Other academic)
  • 40.
    Kumar, V.
    et al.
    Åbo Akademi University, Turku, Finland.
    Forsberg, Sven
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Engström, Ann-Christine
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Nurmi, M.
    Åbo Akademi University, Turku, Finland.
    Dahlström, Christina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Toivakka, M.
    Åbo Akademi University, Turku, Finland.
    Conductive carbon-nanocellulose coatings on paper2017In: Paper Conference and Trade Show, PaperCon 2017: Renew, Rethink, Redefine the Future, TAPPI Press , 2017, p. 26-35Conference paper (Refereed)
  • 41.
    Kumar, Vinay
    et al.
    Åbo Akad Univ, Turku, Finland.
    Forsberg, Sven
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Engström, Ann-Christine
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Nurmi, Maristiina
    Åbo Akad Univ, Turku, Finland.
    Andres, Britta
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Dahlström, Christina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Toivakka, Martti
    Åbo Akad Univ, Turku, Finland.
    Conductive nanographite-nanocellulose coatings on paper2017In: Flexible And Printed Electronics, ISSN 2058-8585, Vol. 2, no 3, article id aa728eArticle in journal (Refereed)
    Abstract [en]

    Paper products with active and functional coatings have attracted interest in recent years to counter the stagnating demand for traditional graphic paper grades. Conductive coatings have potential uses in various energy generation and storage applications, e.g. in batteries, supercapacitors, and photovoltaics. The current work aims to demonstrate large-scale production of flexible low-cost nanographite coatings on paper-based substrate. The large aspect ratio of graphene present in the suspension limits solids content to very low values, which makes it challenging to create thick coating layers required for high conductivity. The use of nanocellulose binder together with a custom-built slot-coating device enables roll-to-roll coating of thick conductive coatings on paper. The rheological and water-retention properties of nanographite-nanocellulose suspensions are reported. The influence of coat weight, carbon black addition, and calendering on coating structure and the resulting conductivity of the coatings is investigated. Impact of humidity and bending/creasing of coated samples on their electrical performance is explored as well. The lowest surface resistances obtained were in the range 1-2 Ohm/square, for 15 g m(-2) coat weight. Increasing the coat weight and calendering nip load resulted in higher conductivity of coatings. Carbon black addition deteriorated the conductivity somewhat, probably due to increased porosity of coatings. Moisture and creasing did not affect significantly the conductivity of high coat weight and calendered samples. The results reported are very encouraging for future research on further improving the electrical performance of such carbon coatings.

  • 42.
    Norgren, Magnus
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Mathematics, and Science Education (2023-).
    Costa, Carolina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Mathematics, and Science Education (2023-).
    Alves, Luis
    Eivazi, Alireza
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Mathematics, and Science Education (2023-).
    Dahlström, Christina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Mathematics, and Science Education (2023-).
    Svanedal, Ida
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Mathematics, and Science Education (2023-).
    Edlund, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Mathematics, and Science Education (2023-).
    Medronho, Bruno
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Mathematics, and Science Education (2023-). Universidade do Algarve.
    Perspectives on the Lindman Hypothesis and Cellulose Interactions2023In: Molecules, ISSN 1431-5157, E-ISSN 1420-3049, Vol. 28, no 10, article id 4216Article, review/survey (Refereed)
    Abstract [en]

    In the history of cellulose chemistry, hydrogen bonding has been the predominant explanation when discussing intermolecular interactions between cellulose polymers. This is the general consensus in scholarly textbooks and in many research articles, and it applies to several other biomacromolecules’ interactions as well. This rather unbalanced description of cellulose has likely impacted the development of materials based on the processing of cellulose—for example, via dissolution in various solvent systems and regeneration into solid materials, such as films and fibers, and even traditional wood fiber handling and papermaking. In this review, we take as a starting point the questioning of the general description of the nature of cellulose and cellulose interactions initiated by Professor Björn Lindman, based on generic physicochemical reasoning about surfactants and polymers. This dispute, which became known as “the Lindman hypothesis”, highlights the importance of hydrophobic interactions in cellulose systems and that cellulose is an amphiphilic polymer. This paper elaborates on Björn Lindman’s contribution to the subject, which has caused the scientific community to revisit cellulose and reconsider certain phenomena from other perspectives. 

  • 43.
    Norgren, Magnus
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Costa, Carolina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Yang, Jiayi
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Eivazihollagh, Alireza
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Dahlström, Christina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Mira, I.
    Benjamins, J.W.
    Edlund, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Lindman, Björn
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Use of molecular cellulose in dispersions and design of nanocomposites2017Conference paper (Other academic)
  • 44.
    Norgren, Magnus
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Yang, Jiayi
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Costa, Carolina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Eivazihollagh, Alireza
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Carlsson, Fredrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Dahlström, Christina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Medronho, Bruno
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Edlund, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Lindman, Björn
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Water-based dissolution of wood cellulose and design of novel cellulose-based nanocomposite materials2017Conference paper (Refereed)
  • 45.
    Osong, Sinke Henshaw
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Dahlström, Christina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Forsberg, Sven
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences. Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Andres, Britta
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Engstrand, Per
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Norgren, Sven
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Engström, Ann-Christine
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Nanofibrillated cellulose/nanographite composite films2016In: Cellulose, ISSN 0969-0239, E-ISSN 1572-882X, Vol. 23, no 4, p. 2487-2500Article in journal (Refereed)
    Abstract [en]

    Though research into nanofibrillated cellulose (NFC) has recently increased, few studies have considered co-utilising NFC and nanographite(NG) in composite films, and, it has, however been a challenge to use high-yield pulp fibres (mechanical pulps) to produce this nanofibrillar material. It is worth noting that there is a significant difference between chemical pulp fibres and high-yield pulp fibres, as the former is composed mainly of cellulose and has a yield of approximately 50 % while the latter is consist of cellulose, hemicellulose and lignin, and has a yield of approximately 90 %. NFC was produced by combining TEMPO (2,2,6,6-tetramethypiperidine-1-oxyl)-mediated oxidation with the mechanical shearing of chemi-thermomechanical pulp (CTMP) and sulphite pulp (SP); the NG was produced by mechanically exfoliating graphite. The different NaClO dosages in the TEMPO system differently oxidised the fibres, altering their fibrillation efficiency. NFC-NG films were produced by casting in a Petri dish. We examine the effect of NG on the sheet-resistance and mechanical properties of NFC films. Addition of 10 wt% NG to 90 wt% NFC of sample CC2 (5 mmol NaClO CTMP-NFC homogenised for 60 min) improved the sheet resistance, i.e. from that of an insulating pure NFC film to 180 Omega/sq. Further addition of 20 (CC3) and 25 wt% (CC4) of NG to 80 and 75 wt% respectively, lowered the sheet resistance to 17 and 9 Omega/sq, respectively. For the mechanical properties, we found that adding 10 wt% NG to 90 wt% NFC of sample HH2(5 mmol NaClO SP-NFC homogenised for 60 min) improved the tensile index by 28 %, tensile stiffness index by 20 %, and peak load by 28 %. The film's surface morphology was visualised using scanning electron microscopy, revealing the fibrillated structure of NFC and NG. This methodology yields NFC-NG films that are mechanically stable, bendable, and flexible.

  • 46.
    Stolpe, Amanda
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Mathematics, and Science Education (2023-).
    Eivazihollagh, Alireza
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Mathematics, and Science Education (2023-).
    Norgren, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Mathematics, and Science Education (2023-).
    Zhang, Renyun
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Mathematics, and Science Education (2023-).
    Dahlström, Christina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Mathematics, and Science Education (2023-).
    Regenerated cellulose TENG with colour printed surface for increased performance2023In: Book of Abstracts EPNOE 2023, Graz University of Technology , 2023, p. 132-Conference paper (Other academic)
    Abstract [en]

    Triboelectric nanogenerators (TENGs) are ideal to meet the increasing need for green and efficient energy solutions, e.g., in small wireless and/or wearable applications. Regenerated cellulose is an exemplary material regarding both power output and mechanical performance, and it is environmentally friendly and economically favourable. To further improve the triboelectric performance of the cellulose, colour printing was done on the surface with conventional laser printing. Printer toners commonly contain substances with different triboelectric properties. [1] In this work, cellulose fibres were dissolved using a LiOH/urea solvent and regenerated in an ethanol bath and eventually dried under controlled conditions. Thereafter the resulting transparent cellulose films were run through a conventional laser paper printer to apply toners of different colour and patterns on the surface. Cyan, magenta, yellow and black was printed in one layer. In addition, black was printed in certain patterns from low to high coverage and in several layers to evaluate the effect of applied amount. The samples were analysed using SEM, AFM, XRD, FTIR and a TENG was assembled in the contact-separation mode to investigate the triboelectric performance. The printed cellulose films were found to give enhanced triboelectric output. The results show an interesting and simple processing route to enhance the performance of cellulose- based TENG materials that can be useful in the development of cheap and sustainable small wireless electrical generators or sensors.

    [1] Zhang, R.; Hummelgård, M.; Örtegren, J.; Andersson, H.; Olsen, M.; Chen, W.; Wang, P.; Eivazi, A.; Dahlström, C.; Norgren, M., Adv. Engin. Mater., 2023, in press, https://doi.org/10.1002/adem.202300107

  • 47. Toivakka, M.
    et al.
    Koppolu, R.
    Blomquist, Nicklas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Dahlström, Christina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Slot die coating of nanographite/nanocellulose-based electrodes for metal-free supercapacitors2019Conference paper (Other academic)
  • 48.
    Yang, Jiayi
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Costa, Carolina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Eivazihollagh, Alireza
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Carlsson, Fredrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Dahlström, Christina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Medronho, Bruno
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Edlund, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Lindman, Björn
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Norgren, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Water-based dissolution of wood cellulose and design of novel cellulose-based nanocomposite materials2016Conference paper (Other academic)
  • 49.
    Yang, Jiayi
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Dahlström, Christina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Edlund, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Lindman, Björn
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Norgren, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    pH-responsive cellulose–chitosan nanocomposite films with slow release of chitosan2019In: Cellulose, ISSN 0969-0239, E-ISSN 1572-882X, Vol. 26, no 6, p. 3763-3776Article in journal (Refereed)
    Abstract [en]

    Cellulose–chitosan films were preparedusing a physical method in which cellulose andchitosan were separately dissolved via freeze thawingin LiOH/urea and mixed in different proportions, theresulting films being cast and regenerated in water/ethanol. X-ray diffraction and Fourier transforminfrared spectroscopy (FT-IR) spectroscopy verifiedthe composition changes in the nanocomposites due todifferent mixing ratios between the polymers. Tensilestress–strain measurements indicated that the mechan-ical performance of the cellulose–chitosan nanocom-posites slightly worsened with increasing chitosancontent compared with that of films comprisingcellulose alone. Field emission scanning electronmicroscopy revealed the spontaneous formation ofnanofibers in the films; these nanofibers were subse-quently ordered into lamellar structures. Water uptakeand microscopy analysis of film thickness changesindicated that the swelling dramatically increased atlower pH and with increasing chitosan content, thisbeing ascribed to the Gibbs–Donnan effect. Slowmaterial loss appeared at acidic pH, as indicated by aloss of weight, and quantitative FT-IR analysisconfirmed that chitosan was the main componentreleased.Asample containing 75% chitosan reached amaximum swelling ratio and weight loss of 1500%and 55 wt%, respectively, after 12 h at pH 3. Thestudy presents a novel way of preparing pH-responsivecellulose–chitosan nanocomposites with slow-releasecharacteristics using an environmentally friendlyprocedure and without any chemical reactions.

    Download full text (pdf)
    fulltext
  • 50.
    Yang, Jiayi
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Dahlström, Christina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Lindman, Björn
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Edlund, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Norgren, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Preparation and Characterization of Bio-Nanocomposite Films from Mixed Cellulose-Chitosan Solutions2016Conference paper (Refereed)
12 1 - 50 of 55
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf