miun.sePublications
Change search
Refine search result
1 - 45 of 45
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Allahgholi, A.
    et al.
    DESY, D-22607 Hamburg, Germany.
    Becker, J.
    DESY, D-22607 Hamburg, Germany.
    Bianco, L.
    DESY, D-22607 Hamburg, Germany.
    Bradford, R.
    Adv Photon Source, Chicago, IL USA.
    Delfs, A.
    DESY, D-22607 Hamburg, Germany.
    Dinapoli, R.
    Paul Scherrer Inst, OFLB-006, CH-5232 Villigen, Switzerland.
    Goettlicher, P.
    DESY, D-22607 Hamburg, Germany.
    Gronewald, M.
    Univ Bonn, D-53115 Bonn, Germany.
    Graafsma, Heinz
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. DESY, D-22607 Hamburg, Germany.
    Greiffenberg, D.
    Paul Scherrer Inst, OFLB-006, CH-5232 Villigen, Switzerland.
    Henrich, B. H.
    Paul Scherrer Inst, OFLB-006, CH-5232 Villigen, Switzerland.
    Hirsemann, H.
    DESY, D-22607 Hamburg, Germany.
    Jack, S.
    DESY, D-22607 Hamburg, Germany.
    Klanner, R.
    Univ Hamburg, D-22761 Hamburg, Germany.
    Klyuev, A.
    DESY, D-22607 Hamburg, Germany.
    Krueger, H.
    Univ Bonn, D-53115 Bonn, Germany.
    Lange, S.
    DESY, D-22607 Hamburg, Germany.
    Marras, A.
    DESY, D-22607 Hamburg, Germany.
    Mezza, D.
    Paul Scherrer Inst, OFLB-006, CH-5232 Villigen, Switzerland.
    Mozzanica, A.
    Paul Scherrer Inst, OFLB-006, CH-5232 Villigen, Switzerland.
    Perova, I.
    DESY, D-22607 Hamburg, Germany.
    Xia, Q.
    DESY, D-22607 Hamburg, Germany.
    Schmitt, B.
    Paul Scherrer Inst, OFLB-006, CH-5232 Villigen, Switzerland.
    Schwandt, J.
    Univ Hamburg, D-22761 Hamburg, Germany.
    Sheviakov, I.
    DESY, D-22607 Hamburg, Germany.
    Shi, X.
    Paul Scherrer Inst, OFLB-006, CH-5232 Villigen, Switzerland.
    Trunk, U.
    DESY, D-22607 Hamburg, Germany.
    Zhang, J.
    DESY, D-22607 Hamburg, Germany.
    The adaptive gain integrating pixel detector2016In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 11, no 2, article id C02066Article in journal (Refereed)
    Abstract [en]

    The adaptive gain integrating pixel detector (AGIPD) is a development of a collaboration between Deustsches Elektronen-Synchrotron (DESY), the Paul-Scherrer-Institute (PSI), the University of Hamburg and the University of Bonn. The detector is designed to cope with the demanding challenges of the European XFEL. Therefore it comes along with an adaptive gain stage allowing a high dynamic range, spanning from single photon sensitivity to 10(4) x 12.4 keV photons and 352 analogue memory cells per pixel. The aim of this report is to briefly explain the concepts of the AGIPD electronics and mechanics and then present recent experiments demonstrating the functionality of its key features.

  • 2.
    Allahgholi, A.
    et al.
    Center for Free-Electron Laser Science, DESY, Hamburg, Germany.
    Becker, J.
    Center for Free-Electron Laser Science, DESY, Hamburg, Germany; Cornell University, Ithaca, NY, United States .
    Bianco, L.
    Center for Free-Electron Laser Science, DESY, Hamburg, Germany.
    Delfs, A.
    Center for Free-Electron Laser Science, DESY, Hamburg, Germany.
    Arino-Estrada, G.
    Center for Free-Electron Laser Science, DESY, Hamburg, Germany.
    Gottlicher, P.
    Center for Free-Electron Laser Science, DESY, Hamburg, Germany.
    Graafsma, Heinz
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. Center for Free-Electron Laser Science, DESY, Hamburg, Germany.
    Hirsemann, H.
    Center for Free-Electron Laser Science, DESY, Hamburg, Germany.
    Jack, S.
    Center for Free-Electron Laser Science, DESY, Hamburg, Germany.
    Klyuev, A.
    Center for Free-Electron Laser Science, DESY, Hamburg, Germany.
    Lange, S.
    Center for Free-Electron Laser Science, DESY, Hamburg, Germany.
    Marras, A.
    Center for Free-Electron Laser Science, DESY, Hamburg, Germany.
    Poehlsen, J.
    Center for Free-Electron Laser Science, DESY, Hamburg, Germany.
    Sheviakov, I.
    Center for Free-Electron Laser Science, DESY, Hamburg, Germany.
    Trunk, U.
    Center for Free-Electron Laser Science, DESY, Hamburg, Germany.
    Xia, Q.
    Center for Free-Electron Laser Science, DESY, Hamburg, Germany.
    Zhang, J.
    Center for Free-Electron Laser Science, DESY, Hamburg, Germany.
    Zimmer, M.
    Center for Free-Electron Laser Science, DESY, Hamburg, Germany.
    Dinapoli, R.
    PSI, Villigen, Switzerland.
    Greiffenberg, D.
    PSI, Villigen, Switzerland.
    Mezza, D.
    PSI, Villigen, Switzerland.
    Mozzanica, A.
    PSI, Villigen, Switzerland.
    Schmitt, B.
    PSI, Villigen, Switzerland.
    Shi, X.
    PSI, Villigen, Switzerland.
    Klanner, R.
    University of Hamburg, Germany.
    Schwandt, J.
    University of Hamburg, Germany.
    Kruger, H.
    University of Bonn, Germany.
    Rah, S.
    Pohang Accelerator Laboratory, Pohang, South Korea.
    The AGIPD 1.0 ASIC: Random access high frame rate, high dynamic range X-ray camera readout for the European XFEL2015In: 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2015, Institute of Electrical and Electronics Engineers (IEEE), 2015, article id 7581819Conference paper (Refereed)
    Abstract [en]

    The European XFEL is an extremely brilliant Free Electron Laser Source with a very demanding pulse structure: trains of 2700 X-Ray pulses are repeated at 10 Hz. The pulses inside the train are spaced by 220 ns and each one contains up to 1012 photons of 12.4 keV, while being ≤ 100 fs in length. AGIPD (Adaptive Gain Integrating Pixel Detector) is a hybrid 1M-pixel detector developed by DESY, PSI, and the Universities of Bonn and Hamburg to cope with these properties. Thus the readout ASIC has to provide not only single photon sensitivity and a dynamic range ≳ 104 photons/pixel in the same image but also a memory for as many images of a pulse train as possible for delayed readout prior to the next train. The AGIPD 1.0 ASIC uses a 130 nm CMOS technology and radiation tolerant techniques to withstand the radiation damage incurred by the high impinging photon flux. Each ASIC contains 64 × 64 pixels of 200μmχ200μm. The circuit of each pixel contains a charge sensitive preamplifier with threefold switchable gain, a discriminator for an adaptive gain selection, and a correlated double sampling (CDS) stage to remove reset and low-frequency noise components. The output of the CDS, as well as the dynamically selected gain is sampled in a capacitor-based analogue memory for 352 samples, which occupies about 80% of a pixels area. For readout each pixel features a charge sensitive buffer. A control circuit with a command based interface provides random access to the memory and controls the row-wise readout of the data via multiplexers to four differential analogue ports. The AGIPD 1.0 full scale ASIC has been received back from the foundry in fall of 2013. Since then it has been extensively characterised also with a sensor as a single chip and in 2 × 8-chip modules for the AGIPD 1 Mpix detector. We present the design of the AGIPD 1.0 ASIC along with supporting results, also from beam tests at PETRA III and APS, and show changes incorporated in the recently taped out AGIPD 1.1 ASIC upgrade.

  • 3.
    Allahgholi, A.
    et al.
    Deutsch Elekt Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Becker, J.
    Deutsch Elekt Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Bianco, L.
    Deutsch Elekt Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Delfs, A.
    Deutsch Elekt Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Dinapoli, R.
    Paul Scherrer Inst, CH-5232 Villigen, Switzerland.
    Arino-Estrada, G.
    Deutsch Elekt Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Goettlicher, P.
    Deutsch Elekt Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Graafsma, Heinz
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. Deutsch Elekt Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Greiffenberg, D.
    Paul Scherrer Inst, CH-5232 Villigen, Switzerland.
    Hirsemann, H.
    Deutsch Elekt Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Jack, S.
    Deutsch Elekt Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Klanner, R.
    Univ Hamburg, Mittelweg 177, D-20148 Hamburg, Germany.
    Klyuev, A.
    Deutsch Elekt Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Krueger, H.
    Univ Bonn, D-53012 Bonn, Germany.
    Lange, S.
    Deutsch Elekt Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Marras, A.
    Deutsch Elekt Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Mezza, D.
    Paul Scherrer Inst, CH-5232 Villigen, Switzerland.
    Mozzanica, A.
    Paul Scherrer Inst, CH-5232 Villigen, Switzerland.
    Poehlsen, J.
    Deutsch Elekt Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Rah, S.
    Deutsch Elekt Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Xia, Q.
    Deutsch Elekt Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Schmitt, B.
    Paul Scherrer Inst, CH-5232 Villigen, Switzerland.
    Schwandt, J.
    Univ Hamburg, Mittelweg 177, D-20148 Hamburg, Germany.
    Sheviakov, I.
    Deutsch Elekt Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Shi, X.
    Paul Scherrer Inst, CH-5232 Villigen, Switzerland.
    Smoljanin, S.
    Deutsch Elekt Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Trunk, U.
    Deutsch Elekt Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Zhang, J.
    Deutsch Elekt Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Zimmer, M.
    Deutsch Elekt Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Front end ASIC for AGIPD, a high dynamic range fast detector for the European XFEL2016In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 11, no 1, article id C01057Article in journal (Refereed)
    Abstract [en]

    The Adaptive Gain Integrating Pixel Detector (AGIPD) is a hybrid pixel X-ray detector for the European-XFEL. One of the detector's important parts is the radiation tolerant front end ASIC fulfilling the European-XFEL requirements: high dynamic range-from sensitivity to single 12.5keV-photons up to 104 photons. It is implemented using the dynamic gain switching technique with three possible gains of the charge sensitive preamplifier. Each pixel can store up to 352 images in memory operated in random-access mode at >= 4.5MHz frame rate. An external vetoing may be applied to overwrite unwanted frames.

  • 4.
    Allahgholi, A.
    et al.
    Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
    Becker, J.
    Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
    Bianco, L.
    Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
    Delfs, A.
    Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
    Dinapoli, R.
    Paul-Scherrer-Institut PSI, Villigen, Switzerland.
    Fretwurst, E.
    University of Bonn, Bonn, Germany.
    Göttlicher, P.
    University of Hamburg, Hamburg, Germany.
    Graafsma, Heinz
    Mid Sweden University, Faculty of Science, Technology and Media. Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
    Greiffenberg, D.
    Paul-Scherrer-Institut PSI, Villigen, Switzerland.
    Gronewald, M.
    University of Bonn, Bonn, Germany.
    Hirsemann, H.
    Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
    Jack, S.
    Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
    Klanner, R.
    University of Bonn, Bonn, Germany.
    Klyuev, A.
    Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
    Krüger, H.
    University of Bonn, Bonn, Germany.
    Marras, A.
    Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
    Mezza, D.
    Paul-Scherrer-Institut PSI, Villigen, Switzerland.
    Mozzanica, A.
    Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
    Schmitt, B.
    Paul-Scherrer-Institut PSI, Villigen, Switzerland.
    Schwandt, J.
    Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
    Sheviakov, I.
    Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
    Shi, X.
    Paul-Scherrer-Institut PSI, Villigen, Switzerland.
    Xia, Q.
    Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
    Zhang, J.
    Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
    Zimmer, M.
    Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
    AGIPD, the electronics for a high speed X-ray imager at the Eu-XFEL2014In: Proceedings of Science, Proceedings of Science (PoS) , 2014, article id 253Conference paper (Refereed)
    Abstract [en]

    The AGIPD (Adaptive Gain Integrated Pixel Detector) X-ray imaging camera will be operated at the X-ray Free Electron Laser, Eu-XFEL, under construction in Hamburg, Germany. Key parameters are 1 million 200 μm square pixels, single 12.4 keV photon detection and a dynamic range to 10 000/pixel/image. The developed sensors, ASICs, PCB-electronics and FPGA firmware acquire individual images per bunch at 27 000 bunches/s, packed into 10 bunch-trains/s with a bunch separation of 222 ns. Bunch-trains are handled by 352 analogue storage cells within each pixel of the ASIC and written during the 0.6msec train delivery. Therefore AGIPD can store 3520 images/s from the delivered 27 000 bunches/s. Random addressing provides reusability of each cell after an image has been declared as low-quality, so that good images can be selected. Digitization is performed between trains (99.4 msec). In the paper all functional blocks are introduced. The details concentrate on the DAQ-chain PCB-electronics and the slow control. A dense area of 1024 ADC-channels, each with a pickup-noise filtering and sampling of up to 50 MS/s/ADC and a serial output of 700 Mbit/s/ADC. FPGAs operate the ASICs synchronized to the bunch structure and collect the bit streams from 64 ADCs/FPGA. Pre-sorted data is transmitted on 10 GbE links out of the camera head using the time between trains. The control and monitoring of the camera with 600 A current consumption is based on a micro-controller and I2C bus with an addressing architecture allowing many devices and identical modules. The high currents require planned return paths at the system level. First experimental experience with the constructed components will be presented.

  • 5.
    Allahgholi, A.
    et al.
    Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany..
    Becker, J.
    Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany..
    Bianco, L.
    Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany..
    Delfs, A.
    Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany..
    Dinapoli, R.
    Paul Scherrer Inst, CH-5232 Villigen, Switzerland..
    Goettlicher, P.
    Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany..
    Graafsma, Heinz
    Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany.;Mid Sweden Univ, S-85170 Sundsvall, Sweden.
    Greiffenberg, D.
    Paul Scherrer Inst, CH-5232 Villigen, Switzerland..
    Hirsemann, H.
    Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany..
    Jack, S.
    Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany..
    Klanner, R.
    Univ Hamburg, D-20148 Hamburg, Germany..
    Klyuev, A.
    Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany..
    Krueger, H.
    Univ Bonn, D-53012 Bonn, Germany..
    Lange, S.
    Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany..
    Marras, A.
    Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany..
    Mezza, D.
    Paul Scherrer Inst, CH-5232 Villigen, Switzerland.
    Mozzanica, A.
    Paul Scherrer Inst, CH-5232 Villigen, Switzerland.
    Rah, S.
    Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany..
    Xia, Q.
    Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany..
    Schmitt, B.
    Paul Scherrer Inst, CH-5232 Villigen, Switzerland.
    Schwandt, J.
    Univ Hamburg, D-20148 Hamburg, Germany.
    Sheviakov, I.
    Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany..
    Shi, X.
    Paul Scherrer Inst, CH-5232 Villigen, Switzerland.
    Smoljanin, S.
    Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany..
    Trunk, U.
    Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany..
    Zhang, J.
    Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany..
    Zimmer, M.
    Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany..
    AGIPD, a high dynamic range fast detector for the European XFEL2015In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 10, no 1, article id C01023Article in journal (Refereed)
    Abstract [en]

    AGIPD-(Adaptive Gain Integrating Pixel Detector) is a hybrid pixel X-ray detector developed by a collaboration between Deutsches Elektronen-Synchrotron (DESY), Paul-Scherrer-Institut (PSI), University of Hamburg and the University of Bonn. The detector is designed to comply with the requirements of the European XFEL. The radiation tolerant Application Specific Integrated Circuit (ASIC) is designed with the following highlights: high dynamic range, spanning from single photon sensitivity up to 10(4) 12.5keV photons, achieved by the use of the dynamic gain switching technique using 3 possible gains of the charge sensitive preamplifier. In order to store the image data, the ASIC incorporates 352 analog memory cells per pixel, allowing also to store 3 voltage levels corresponding to the selected gain. It is operated in random-access mode at 4.5MHz frame rate. The data acquisition is done during the 99.4ms between the bunch trains. The AGIPD has a pixel area of 200 x 200 m m(2) and a 500 m m thick silicon sensor is used. The architecture principles were proven in different experiments and the ASIC characterization was done with a series of development prototypes. The mechanical concept was developed in the close contact with the XFEL beamline scientists and is now being manufactured. A first single module system was successfully tested at APS.

  • 6.
    Allahgholi, A.
    et al.
    Center for Free-Electron Laser Science, DESY, Hamburg, Germany .
    Becker, J.
    Center for Free-Electron Laser Science, DESY, Hamburg, Germany .
    Bianco, L.
    Center for Free-Electron Laser Science, DESY, Hamburg, Germany .
    Delfs, A.
    Center for Free-Electron Laser Science, DESY, Hamburg, Germany .
    Gottlicher, P.
    Center for Free-Electron Laser Science, DESY, Hamburg, Germany .
    Graafsma, Heinz
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. Center for Free-Electron Laser Science, DESY, Hamburg, Germany .
    Hirsemann, H.
    Center for Free-Electron Laser Science, DESY, Hamburg, Germany .
    Jack, S.
    Center for Free-Electron Laser Science, DESY, Hamburg, Germany .
    Klyuev, A.
    Center for Free-Electron Laser Science, DESY, Hamburg, Germany .
    Lange, S.
    Center for Free-Electron Laser Science, DESY, Hamburg, Germany .
    Marras, A.
    Center for Free-Electron Laser Science, DESY, Hamburg, Germany .
    Sheviakov, I.
    Center for Free-Electron Laser Science, DESY, Hamburg, Germany .
    Trunk, U.
    Center for Free-Electron Laser Science, DESY, Hamburg, Germany .
    Xia, Q.
    Center for Free-Electron Laser Science, DESY, Hamburg, Germany .
    Zhang, J.
    Center for Free-Electron Laser Science, DESY, Hamburg, Germany .
    Zimmer, M.
    Center for Free-Electron Laser Science, DESY, Hamburg, Germany .
    Dinapoli, R.
    PSI, Villigen, Switzerland .
    Greiffenberg, D.
    PSI, Villigen, Switzerland .
    Mezza, D.
    PSI, Villigen, Switzerland .
    Mozzanica, A.
    PSI, Villigen, Switzerland .
    Schmitt, B.
    PSI, Villigen, Switzerland .
    Shi, X.
    PSI, Villigen, Switzerland .
    Klanner, R.
    University of Hamburg, Germany .
    Schwandt, J.
    University of Hamburg, Germany .
    Gronewald, M.
    University of Bonn, Germany .
    Kruger, H.
    University of Bonn, Germany .
    Rah, S.
    Pohang Accelerator Laboratory, Pohang, South Korea .
    AGIPD 1.0: The high-speed high dynamic range readout ASIC for the adaptive gain integrating pixel detector at the European XFEL2016In: 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2014, Institute of Electrical and Electronics Engineers (IEEE), 2016, article id 7431038Conference paper (Refereed)
    Abstract [en]

    AGIPD is a hybrid pixel X-ray detector developed by a collaboration between Deutsches Elektronen-Synchrotron (DESY), Paul-Scherrer-Institute (PSI), University of Hamburg and the University of Bonn. The detector is designed to comply with the requirements of the European XFEL. The radiation tolerant Application Specific Integrated Circuit (ASIC) is designed with the following highlights: high dynamic range, spanning from single photon sensitivity up to 104 × 12.4 keV photons, achieved by the use of dynamic gain switching, auto-selecting one of 3 gains of the charge sensitive pre-amplifier. To cope with the unique features of the European XFEL source, image data is stored in 352 analogue memory cells per pixel. The selected gain is stored in the same way and depth, encoded as one of 3 voltage levels. These memories are operated in random-access mode at 4.5MHz frame rate. Data is read out on a row-by-row basis via multiplexers to the DAQ system for digitisation during the 99.4ms gap between the bunch trains of the European XFEL. The AGIPD 1.0 ASIC features 64×64 pixels with a pixel area of 200×200 μm2. It is bump-bonded to a 500 μm thick silicon sensor. The principles of the chip architecture were proven in different experiments and the ASIC characterization was performed with a series of development prototypes. The mechanical concept of the detector system was developed in close contact with the XFEL beamline scientists to ensure a seamless integration into the beamline setup and is currently being manufactured. The first single module system was successfully tested at APS1 the high dynamic range allows imaging of the direct synchrotron beam along with single photon sensitivity and burst imaging of 352 subsequent frames synchronized to the source.

  • 7.
    Allahgholi, Aschkan
    et al.
    Deutsch Elekt Synchrotron, Hamburg, Germany.
    Becker, Julian
    Deutsch Elekt Synchrotron, Hamburg, Germany.
    Delfs, Annette
    Deutsch Elekt Synchrotron, Hamburg, Germany.
    Dinapoli, Roberto
    Paul Scherrer Inst, Villigen, Switzerland.
    Goettlicher, Peter
    Deutsch Elekt Synchrotron, Hamburg, Germany.
    Greiffenberg, Dominic
    Paul Scherrer Inst, Villigen, Switzerland.
    Henrich, Beat
    Paul Scherrer Inst, Villigen, Switzerland.
    Hirsemann, Helmut
    Deutsch Elekt Synchrotron, Hamburg, Germany.
    Kuhn, Manuela
    Deutsch Elekt Synchrotron, Hamburg, Germany.
    Klanner, Robert
    Univ Hamburg, Hamburg, Germany.
    Klyuev, Alexander
    Deutsch Elekt Synchrotron, Hamburg, Germany.
    Krueger, Hans
    Univ Bonn, Bonn, Germany.
    Lange, Sabine
    Deutsch Elekt Synchrotron, Hamburg, Germany.
    Laurus, Torsten
    Deutsch Elekt Synchrotron, Hamburg, Germany.
    Marras, Alessandro
    Deutsch Elekt Synchrotron, Hamburg, Germany.
    Mezza, Davide
    Paul Scherrer Inst, Villigen, Switzerland.
    Mozzanica, Aldo
    Paul Scherrer Inst, Villigen, Switzerland.
    Niemann, Magdalena
    Deutsch Elekt Synchrotron, Hamburg, Germany.
    Poehlsen, Jennifer
    Deutsch Elekt Synchrotron, Hamburg, Germany.
    Schwandt, Joern
    Univ Hamburg, Hamburg, Germany.
    Sheviakov, Igor
    Deutsch Elekt Synchrotron, Hamburg, Germany.
    Shi, Xintian
    Paul Scherrer Inst, Villigen, Switzerland.
    Smoljanin, Sergej
    Deutsch Elekt Synchrotron, Hamburg, Germany.
    Steffen, Lothar
    Deutsch Elekt Synchrotron, Hamburg, Germany.
    Sztuk-Dambietz, Jolanta
    European XFEL, Schenefeld, Germany.
    Trunk, Ulrich
    Deutsch Elekt Synchrotron, Hamburg, Germany.
    Xia, Qingqing
    Deutsch Elekt Synchrotron, Hamburg, Germany.
    Zeribi, Mourad
    Deutsch Elekt Synchrotron, Hamburg, Germany.
    Zhang, Jiaguo
    Paul Scherrer Inst, Villigen, Switzerland.
    Zimmer, Manfred
    Deutsch Elekt Synchrotron, Hamburg, Germany.
    Schmitt, Bernd
    Paul Scherrer Inst, Villigen, Switzerland.
    Graafsma, Heinz
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. Deutsch Elekt Synchrotron, Hamburg, Germany.
    The Adaptive Gain Integrating Pixel Detector at the European XFEL2019In: Journal of Synchrotron Radiation, ISSN 0909-0495, E-ISSN 1600-5775, Vol. 26, p. 74-82Article in journal (Refereed)
    Abstract [en]

    The Adaptive Gain Integrating Pixel Detector (AGIPD) is an X-ray imager, custom designed for the European X-ray Free-Electron Laser (XFEL). It is a fast, low-noise integrating detector, with an adaptive gain amplifier per pixel. This has an equivalent noise of less than 1keV when detecting single photons and, when switched into another gain state, a dynamic range of more than 10(4)photons of 12keV. In burst mode the system is able to store 352 images while running at up to 6.5MHz, which is compatible with the 4.5MHz frame rate at the European XFEL. The AGIPD system was installed and commissioned in August 2017, and successfully used for the first experiments at the Single Particles, Clusters and Biomolecules (SPB) experimental station at the European XFEL since September 2017. This paper describes the principal components and performance parameters of the system.

  • 8.
    Allahgholi, Aschkan
    et al.
    Deutsches Elektronensynchrotron - DESY, Hamburg, Germany.
    Becker, Julian
    Deutsches Elektronensynchrotron - DESY, Hamburg, Germany.
    Delfs, Annette
    Deutsches Elektronensynchrotron - DESY, Hamburg, Germany.
    Dinapoli, Roberto
    Paul Scherrer Institut - PSI, Villigen, Switzerland.
    Göttlicher, Peter
    Deutsches Elektronensynchrotron - DESY, Hamburg, Germany.
    Graafsma, Heinz
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. Deutsches Elektronensynchrotron - DESY, Hamburg, Germany.
    Greiffenberg, Dominic
    Paul Scherrer Institut - PSI, Villigen, Switzerland.
    Hirsemann, Helmut
    Deutsches Elektronensynchrotron - DESY, Hamburg, Germany.
    Jack, Stefanie
    Deutsches Elektronensynchrotron - DESY, Hamburg, Germany.
    Klyuev, Alexander
    Deutsches Elektronensynchrotron - DESY, Hamburg, Germany.
    Krüger, Hans
    Universität Bonn, Bonn, Germany.
    Kuhn, Manuela
    Deutsches Elektronensynchrotron - DESY, Hamburg, Germany.
    Laurus, Torsten
    Deutsches Elektronensynchrotron - DESY, Hamburg, Germany.
    Marras, Alessandro
    Deutsches Elektronensynchrotron - DESY, Hamburg, Germany.
    Mezza, Davide
    Paul Scherrer Institut - PSI, Villigen, Switzerland.
    Mozzanica, Aldo
    Paul Scherrer Institut - PSI, Villigen, Switzerland.
    Poehlsen, Jennifer
    Deutsches Elektronensynchrotron - DESY, Hamburg, Germany.
    Shefer Shalev, Ofir
    Deutsches Elektronensynchrotron - DESY, Hamburg, Germany.
    Sheviakov, Igor
    Deutsches Elektronensynchrotron - DESY, Hamburg, Germany.
    Schmitt, Bernd
    Paul Scherrer Institut - PSI, Villigen, Switzerland.
    Schwandt, Jörn
    Universität Hamburg, Hamburg, Germany.
    Shi, Xintian
    Paul Scherrer Institut - PSI, Villigen, Switzerland.
    Smoljanin, Sergej
    Deutsches Elektronensynchrotron - DESY, Hamburg, Germany.
    Trunk, Ulrich
    Deutsches Elektronensynchrotron - DESY, Hamburg, Germany.
    Zhang, Jiaguo
    Paul Scherrer Institut - PSI, Villigen, Switzerland.
    Zimmer, Manfred
    Deutsches Elektronensynchrotron - DESY, Hamburg, Germany.
    Megapixels @ Megahertz – The AGIPD high-speed cameras for the European XFEL2019In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, E-ISSN 1872-9576, Vol. 942, article id 162324Article, review/survey (Refereed)
    Abstract [en]

    The European XFEL is an extremely brilliant Free Electron Laser Source with a very demanding pulse structure: trains of 2700 X-ray pulses are repeated at 10Hz. The pulses inside the train are spaced by 220ns and each one contains up to 1012photons of 12.4keV, while being ≤100fs in length. AGIPD, the Adaptive Gain Integrating Pixel Detector, is a hybrid pixel detector developed by DESY, PSI, and the Universities of Bonn and Hamburg to cope with these properties. It is a fast, low noise integrating detector, with single photon sensitivity (for Eγ⪆6keV) and a large dynamic range, up to 104 photons at 12.4keV. This is achieved with a charge sensitive amplifier with 3 adaptively selected gains per pixel. 352 images can be recorded at up to 6.5MHz and stored in the in-pixel analogue memory and read out between pulse trains. The core component of this detector is the AGIPD ASIC, which consists of 64 × 64 pixels of 200µm×200µm. Control of the ASIC's image acquisition and analogue readout is via a command based interface. FPGA based electronic boards, controlling ASIC operation, image digitisation and 10GE data transmission interface AGIPD detectors to DAQ and control systems. An AGIPD 1Mpixel detector has been installed at the SPB1 experimental station in August 2017, while a second one is currently commissioned for the MID 2 endstation. A larger (4Mpixel) AGIPD detector and one to employ Hi-Z sensor material to efficiently register photons up to Eγ≈25keV are currently under construction. 

  • 9.
    Assoufid, Lahsen
    et al.
    Advanced Photon Source, Argonne National Laboratory, USA.
    Graafsma, Heinz
    Photon-Science Detector Group, Deutsches Elektronen-Synchrotron, Germany.
    Next-generation materials for future synchrotron and free-electron laser sources2017In: MRS bulletin, ISSN 0883-7694, E-ISSN 1938-1425, Vol. 42, no 6, p. 418-423Article in journal (Refereed)
    Abstract [en]

    The development of new materials and improvements of existing ones are at the root of the spectacular recent developments of new technologies for synchrotron storage rings and free-electron laser sources. This holds true for all relevant application areas, from electron guns to undulators, x-ray optics, and detectors. As demand grows for more powerful and efficient light sources, efficient optics, and high-speed detectors, an overview of ongoing materials research for these applications is timely. In this article, we focus on the most exciting and demanding areas of materials research and development for synchrotron radiation optics and detectors. Materials issues of components for synchrotron and free-electron laser accelerators are briefly discussed. The articles in this issue expand on these topics.

  • 10.
    Becker, J.
    et al.
    DESY, Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg, Germany .
    Bianco, L.
    DESY, Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg, Germany .
    Dinapoli, R.
    Paul-Scherrer-Institut(PSI), Villigen, Switzerland .
    Göttlicher, P.
    DESY, Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg, Germany .
    Graafsma, Heinz
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Greiffenberg, D.
    Paul-Scherrer-Institut(PSI), Villigen, Switzerland .
    Gronewald, M.
    University of Bonn, Bonn, Germany .
    Henrich, B. H.
    Paul-Scherrer-Institut(PSI), Villigen, Switzerland .
    Hirsemann, H.
    DESY, Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg, Germany .
    Jack, S.
    DESY, Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg, Germany .
    Klanner, R.
    University of Hamburg, Hamburg, Germany .
    Krüger, H.
    University of Bonn, Bonn, Germany .
    Klyuev, A.
    DESY, Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg, Germany .
    Lange, S.
    DESY, Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg, Germany .
    Marras, A.
    DESY, Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg, Germany .
    Mozzanica, A.
    Paul-Scherrer-Institut(PSI), Villigen, Switzerland .
    Schmitt, B.
    Paul-Scherrer-Institut(PSI), Villigen, Switzerland .
    Schwandt, J.
    University of Hamburg, Hamburg, Germany .
    Sheviakov, I.
    DESY, Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg, Germany .
    Shi, X.
    Paul-Scherrer-Institut(PSI), Villigen, Switzerland .
    Trunk, U.
    DESY, Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg, Germany .
    Zimmer, M.
    DESY, Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg, Germany .
    Zhang, J.
    University of Hamburg, Hamburg, Germany .
    High speed cameras for X-rays: AGIPD and others2013In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 8, no 1, p. Art. no. C01042-Article in journal (Refereed)
    Abstract [en]

    Experiments at high pulse rate Free Electron Laser (FEL) facilities require new cameras capable of acquiring 2D images at high rates, handling large signal dynamic ranges and resolving images from individual pulses. The Adaptive Gain Integrated Pixel Detector (AGIPD) will operated with pulse rates and separations of 27000/s and 220 ns, respectively at European XFEL. Si-sensors, ASICs, PCBs, and FPGA logic are developed for a 1 Mega-pixel camera with 200 μm square pixels with per-pulse occupancies 104. Data from 3520 images/s will be transferred with 80 Gbits/s to a DAQ-system. The electronics have been adapted for use in other synchrotron light source detectors. 

  • 11. Becker, J.
    et al.
    Bianco, L.
    Gottlicher, P.
    Graafsma, Heinz
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Hirsemann, H.
    Jack, S.
    Klyuev, A.
    Marras, A.
    Trunk, U.
    Klanner, R.
    Schwandt, J.
    Zhang, J.
    Dinapoli, R.
    Greiffenberg, D.
    Henrich, B.
    Mozzanica, A.
    Schmitt, B.
    Shi, X.
    Gronewald, M.
    Kruger, H.
    Architecture and design of the AGIPD detector for the European XFEL2012Conference paper (Refereed)
    Abstract [en]

    AGIPD is a hybrid pixel detector developed by DESY, PSI, the University of Bonn and the University of Hamburg. The detector is targeted for use at the European XFEL, a source with unique properties: a bunch train of 2700 pulses with > 1012 photons of 12 keV each, only 100 fs long and with a 220 ns spacing, is repeated at a 10Hz rate. This puts up very demanding requirements: dynamic range has to cover the detection of single photons and extend up to > 104 photons/pixel in the same image, and as many images, as possible have to be recorded in the pixel to be read out between pulse trains. The high photon flux impinging on the detector also calls for a very radiation hard design of sensor and ASIC. The detector will consist of 16 Sensor modules arranged around a central hole for the direct beam. Each made of a single sensor bump-bonded to 2 × 8 readout chips of 64 × 64 pixels in a grid of 200 μm pitch. Each pixel of these ASICs contains a charge sensitive preamplifier featuring adaptive gain switching, changing sensitivity in three ranges, and a buffer to provide correlated double sampling (in the highest sensitivity mode). Most of the pixel area, albeit, is used for an analogue memory to record 352 frames. It is operated in random-access mode: data containing bad frames can be overwritten and the memory can be used in the most efficient way. The readout between two bunch trains is arranged via 4 ports: Data from pixels of one row is read in parallel and serialised by 4 multiplexers at the end of the pixel columns and driven off-chip as differential signals. The operation of the ASIC is controlled via a three-line serial interface, using a command based protocol. It is also used to configure the chip's operational parameters and internal timings. © 2012 IEEE.

  • 12.
    Becker, J.
    et al.
    Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany .
    Bianco, L.
    Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany .
    Göttlicher, P.
    Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany .
    Graafsma, Heinz
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany .
    Hirsemann, H.
    Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany .
    Jack, S.
    Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany .
    Klyuev, A.
    Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany .
    Lange, S.
    Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany .
    Marras, A.
    Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany .
    Rah, S.
    Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany .
    Sheviakov, I.
    Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany .
    Trunk, U.
    Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany .
    Zhang, J.
    Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany .
    Zimmer, M.
    Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany .
    Klanner, R.
    University of Hamburg, Germany .
    Schwandt, J.
    University of Hamburg, Germany .
    Dinapoli, R.
    PSI, Villigen, Switzerland.
    Greiffenberg, D.
    PSI, Villigen, Switzerland.
    Mozzanica, A.
    PSI, Villigen, Switzerland.
    Schmitt, B.
    PSI, Villigen, Switzerland.
    Shi, X.
    PSI, Villigen, Switzerland.
    Krüger, H.
    University of Bonn, Germany .
    The high speed, high dynamic range camera AGIPD2013In: IEEE Nuclear Science Symposium Conference Record, IEEE conference proceedings, 2013, p. Art. no. 6829504-Conference paper (Refereed)
    Abstract [en]

    The European X-Ray Free Electron Laser (XFEL) will provide ultra short, highly coherent X-ray pulses which will revolutionize scientific experiments in a variety of disciplines spanning physics, chemistry, materials science, and biology. One of the differences between the European XFEL and other free electron laser sources is the high pulse frequency of 4.5 MHz. The European XFEL will provide pulse trains, consisting of up to 2700 pulses separated by 220 ns (600 μs in total) followed by an idle time of 99.4 ms, resulting in a supercycle of 10 Hz. Dedicated fast 2D detectors are being developed, one of which is the Adaptive Gain Integrating Pixel Detector (AGIPD). AGIPD is based on the hybrid pixel technology. The design goals of the recently produced, radiation hard Application Specific Integrated Circuit (ASIC) with dynamic gain switching amplifiers are (for each pixel) a dynamic range of more than 10 4 12.4 keV photons in the lowest gain, single photon sensitivity in the highest gain, an analog memory capable of storing 352 images, and operation at 4.5 MHz frame rate. A vetoing scheme allows to maximize the number of useful images that are acquired by providing the possibility to overwrite any previously recorded image during the pulse train. The AGIPD will feature a pixel size of (200 μm)2 and a silicon sensor with a thickness of 500 μm. The image data is read out and digitized between pulse trains. © 2013 IEEE.

  • 13.
    Becker, J.
    et al.
    Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany .
    Marras, A.
    Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany .
    Klyuev, A.
    Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany .
    Westermeier, F.
    Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany .
    Trunk, U.
    Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany .
    Graafsma, Heinz
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany .
    Performance tests of an AGIPD 0.4 assembly at the beamline P10 of PETRA III2013In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 8, no 6, p. Art. no. P06007-Article in journal (Refereed)
    Abstract [en]

    The Adaptive Gain Integrating Pixel Detector (AGIPD) is a novel detector system, currently under development by a collaboration of DESY, the Paul Scherrer Institute in Switzerland, the University of Hamburg and the University of Bonn, and is primarily designed for use at the European XFEL. To verify key features of this detector, an AGIPD 0.4 test chip assembly was tested at the P10 beamline of the PETRA III synchrotron at DESY. The test chip successfully imaged both the direct synchrotron beam and single 7.05 keV photons at the same time, demonstrating the large dynamic range required for XFEL experiments. X-ray scattering measurements from a test sample agree with standard measurements and show the chip's capability of observing dynamics at the microsecond time scale.

  • 14.
    Becker, J.
    et al.
    Deutsches Elektronen-Synchrotron, Notkestr. 85, 22607 Hamburg, Germany.
    Pennicard, D.
    Deutsches Elektronen-Synchrotron, Notkestr. 85, 22607 Hamburg, Germany.
    Graafsma, Heinz
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    The detector simulation toolkit HORUS2012In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 7, no 10, p. Art. no. C10009-Article in journal (Refereed)
    Abstract [en]

    In recent years, X-ray detectors used and developed at synchrotron sources and Free Electron Lasers (FELs) have become increasing powerful and versatile. However, as the capabilities of modern X-ray cameras grew so did their complexity and therefore their response functions are far from trivial. Since understanding the detecting system and its behavior is vital for any physical experiment, the need for dedicated powerful simulation tools arose. The HPAD Output Response fUnction Simulator (HORUS) was originally developed to analyze the performance implications of certain design choices for the Adaptive Gain Integrating Pixel Detector (AGIPD) and over the years grew to a more universal detector simulation toolkit covering the relevant physics in the energy range from below 1 keV to a few hundred keV. HORUS has already been used to study possible improvements of the AGIPD for X-ray Photon Correlation Spectroscopy (XPCS) at the European XFEL and its performance at low beam energies. It is currently being used to study the optimum detector layout for Coherent Diffration Imaging (CDI) at the European XFEL. Simulations of the charge summing mode of the Medipix3 chip have been essential for the improvements of the charge summing mode in the Medipix3 RX chip. HORUS is universal enough to support arbitrary hybrid pixel detector systems (within limitations). To date, the following detector systems are predefined within HORUS: The AGIPD, the Large Pixel Detector (LPD), the Cornell-Stanford Pixel Array Detector (CSPAD), the Mixed-Mode (MMPAD) and KEKPAD, and the Medipix2, Medipix3 and Medipix3 RX chips. © 2012 IOP Publishing Ltd and Sissa Medialab srl.

  • 15.
    Bianco, L.
    et al.
    DESY Deutsch Elektronen Synchrotron, Hamburg, Germany.
    Becker, J.
    DESY Deutsch Elektronen Synchrotron, Hamburg, Germany.
    Dinapoli, R. D.
    Fretwurst, E.
    Goettlicher, P.
    DESY Deutsch Elektronen Synchrotron, Hamburg, Germany.
    Graafsma, Heinz
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. DESY Deutsch Elektronen Synchrotron, Hamburg, Germany.
    Greiffenberg, D.
    Gronewald, M.
    Henrich, B.
    Hirsemann, H.
    DESY Deutsch Elektronen Synchrotron, Hamburg, Germany.
    Jack, S.
    DESY Deutsch Elektronen Synchrotron, Hamburg, Germany.
    Klanner, R.
    Klyuev, A.
    DESY Deutsch Elektronen Synchrotron, Hamburg, Germany.
    Krueger, H.
    Marras, A.
    DESY Deutsch Elektronen Synchrotron, Hamburg, Germany.
    Mozzanica, A.
    Rah, S.
    DESY Deutsch Elektronen Synchrotron, Hamburg, Germany.
    Schmitt, B.
    Shi, X.
    Trunk, U.
    DESY Deutsch Elektronen Synchrotron, Hamburg, Germany.
    Schwandt, J.
    Zhang, J.
    The AGIPD System for the European XFEL2013In: ADVANCES IN X-RAY FREE-ELECTRON LASERS II: INSTRUMENTATION, 2013, p. Art. no. UNSP 87780V-Conference paper (Refereed)
    Abstract [en]

    The European XFEL will generate extremely brilliant pulses of X-rays organized in pulse trains consisting of 2700 pulses <100 fs long, with >10(12) photons, and with a 220 ns spacing. The pulse trains are running at a 10Hz repetition rate. The detector to be used under these conditions will have to face several challenges: the dynamic range has to cover the detection of single photons and extend up to >10(4) photons/pixel/pulse in the same image, framing rates of 4.5 MHz (220 ns) are required in order to record one image per pulse, and as many images as possible have to be recorded during the pulse trains. Due to the high flux, the detector will have to withstand a dose up to 1GGy integrated over 3 years. To meet these challenges a consortium, consisting of Deutsches Elektronensynchrotron (DESY), Paul-Scherrer-Institut (PSI), University of Hamburg and University of Bonn, is developing the Adaptive Gain Integrating Pixel Detector (AGIPD). It is a hybrid-pixel detector, featuring a charge integrating amplifier with dynamic gain switching to cope with the extended dynamic range, and an analogue on-pixel memory for image storage at the required 4.5 MHz frame rate. The readout chip consists of 64x64 pixels of (200 mu m)(2), 8x2 of these readout chips are bump-bonded to a monolithic silicon sensor to form the basic module with 512 x 128 pixels. 4 of these modules are stacked to form a quadrant of the 1k x 1k detector system. Each quadrant is independently moveable in order to adjust a central hole, needed for the direct beam to pass through. Special designs are employed for both the sensor and the readout chip to withstand the integrated dose for 3 years.

  • 16.
    Correa, J.
    et al.
    DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Bayer, M.
    DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Göttlicher, P.
    DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Lange, S.
    DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Marras, A.
    DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Niemann, M.
    DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Reza, Salim
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Shevyakov, I
    DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Smoljanin, S
    DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Tennert, M
    DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Xia, Q
    DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Viti, M
    DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Wunderer, C
    DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Zimmer, M
    DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Graafsma, Heinz
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Characterisation of a PERCIVAL monolithic active pixel prototype using synchrotron radiation2016In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 11, no 2, article id C02090Article in journal (Refereed)
    Abstract [en]

    PERCIVAL ("Pixelated Energy Resolving CMOS Imager, Versatile And Large") is a monolithic active pixel sensor (MAPS) based on CMOS technology. Is being developed by DESY, RAL/STFC, Elettra, DLS, and PAL to address the various requirements of detectors at synchrotron radiation sources and Free Electron Lasers (FELs) in the soft X-ray regime. These requirements include high frame rates and FELs base-rate compatibility, large dynamic range, single-photon counting capability with low probability of false positives, high quantum efficiency (QE), and (multi-)megapixel arrangements with good spatial resolution. Small-scale back-side-illuminated (BSI) prototype systems are undergoing detailed testing with X-rays and optical photons, in preparation of submission of a larger sensor. A first BSI processed prototype was tested in 2014 and a preliminary result—first detection of 350eV photons with some pixel types of PERCIVAL—reported at this meeting a year ago. Subsequent more detailed analysis revealed a very low QE and pointed to contamination as a possible cause. In the past year, BSI-processed chips on two more wafers were tested and their response to soft X-ray evaluated. We report here the improved charge collection efficiency (CCE) of different PERCIVAL pixel types for 400eV soft X-rays together with Airy patterns, response to a flat field, and noise performance for such a newly BSI-processed prototype sensor.

  • 17.
    Correa, J.
    et al.
    DESY (Deutsches Elektronensynchrotron), Germany; CFEL (Center for Free-Electron Laser Science), Germany.
    Marras, A.
    DESY (Deutsches Elektronensynchrotron), Germany; CFEL (Center for Free-Electron Laser Science), Germany.
    Wunderer, C.B.
    DESY (Deutsches Elektronensynchrotron), Germany; CFEL (Center for Free-Electron Laser Science), Germany.
    Göttlicher, P.
    DESY (Deutsches Elektronensynchrotron), Germany.
    Lange, S.
    DESY (Deutsches Elektronensynchrotron), Germany; CFEL (Center for Free-Electron Laser Science), Germany.
    Reza, Salim
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. DESY (Deutsches Elektronensynchrotron), Germany.
    Shevyakov, I.
    DESY (Deutsches Elektronensynchrotron), Germany.
    Tennert, M.
    DESY (Deutsches Elektronensynchrotron), Germany; CFEL (Center for Free-Electron Laser Science), Germany.
    Niemann, M.
    DESY (Deutsches Elektronensynchrotron), Germany; CFEL (Center for Free-Electron Laser Science), Germany.
    Hirsemann, H.
    DESY (Deutsches Elektronensynchrotron), Germany; CFEL (Center for Free-Electron Laser Science), Germany.
    Smoljanin, S.
    DESY (Deutsches Elektronensynchrotron), Germany; CFEL (Center for Free-Electron Laser Science), Germany.
    Supra, J.
    DESY (Deutsches Elektronensynchrotron), Germany.
    Xia, Q.
    DESY (Deutsches Elektronensynchrotron), Germany.
    Zimmer, M.
    DESY (Deutsches Elektronensynchrotron), Germany.
    Allahgholi, A.
    DESY (Deutsches Elektronensynchrotron), Germany; CFEL (Center for Free-Electron Laser Science), Germany.
    Gloskovskii, A.
    DESY (Deutsches Elektronensynchrotron), Germany.
    Viefhaus, J.
    DESY (Deutsches Elektronensynchrotron), Germany.
    Scholz, F.
    DESY (Deutsches Elektronensynchrotron), Germany.
    Seltmann, J.
    DESY (Deutsches Elektronensynchrotron), Germany.
    Klumpp, S.
    DESY (Deutsches Elektronensynchrotron), Germany.
    Cautero, G.
    Elettra Sincrotrone Trieste, Italy.
    Giuressi, D.
    Elettra Sincrotrone Trieste, Italy.
    Khromova, A.
    Elettra Sincrotrone Trieste, Italy; Università degli Studi di Trieste, Italy.
    Menk, R.
    Elettra Sincrotrone Trieste, Italy.
    Pinaroli, G.
    Elettra Sincrotrone Trieste, Italy; Università degli Studi di Udine, Italy.
    Stebel, L.
    Elettra Sincrotrone Trieste, Italy.
    Rinaldi, S.
    Elettra Sincrotrone Trieste, Italy.
    Zema, N.
    Istituto di Struttura della Materia, Italy.
    Catone, D.
    Istituto di Struttura della Materia, Italy.
    Pedersen, U.
    DLS (Diamond Light Source), U.K..
    Tartoni, N.
    DLS (Diamond Light Source), U.K..
    Guerrini, N.
    RAL (Rutherford Appleton Laboratory), U.K..
    Marsh, B.
    RAL (Rutherford Appleton Laboratory), U.K..
    Sedgwick, I.
    RAL (Rutherford Appleton Laboratory), U.K..
    Nicholls, T.
    RAL (Rutherford Appleton Laboratory), U.K..
    Turchetta, R.
    RAL (Rutherford Appleton Laboratory), U.K..
    Hyun, H.J.
    PAL (Pohang Accelerator Laboratory), Korea.
    Kim, K.S.
    PAL (Pohang Accelerator Laboratory), Korea.
    Rah, S.Y.
    PAL (Pohang Accelerator Laboratory), Korea.
    Hoenk, M.E.
    Jet Prop Laboratory, California Institute of Technology, U.S.A..
    Jewell, A.D.
    Jet Prop Laboratory, California Institute of Technology, U.S.A..
    Jones, T.J.
    Jet Prop Laboratory, California Institute of Technology, U.S.A..
    Nikzad, .
    Jet Prop Laboratory, California Institute of Technology, U.S.A..
    Graafsma, Heinz
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. DESY (Deutsches Elektronensynchrotron), Germany.
    On the Charge Collection Efficiency of the PERCIVAL Detector2016In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 11, no 12, article id C12032Article in journal (Refereed)
    Abstract [en]

    The PERCIVAL soft X-ray imager is being developed by DESY, RAL, Elettra, DLS, and PAL to address the challenges at high brilliance Light Sources such as new-generation Synchrotrons and Free Electron Lasers. Typical requirements for detector systems at these sources are high frame rates, large dynamic range, single-photon counting capability with low probability of false positives, high quantum efficiency, and (multi)-mega-pixel arrangements. PERCIVAL is a monolithic active pixel sensor, based on CMOS technology. It is designed for the soft X-ray regime and, therefore, it is post-processed in order to achieve high quantum efficiency in its primary energy range (250 eV to 1 keV) . This work will report on the latest experimental results on charge collection efficiency obtained for multiple back-side-illuminated test sensors during two campaigns, at the P04 beam-line at PETRA III, and the CiPo beam-line at Elettra, spanning most of the primary energy range as well as testing the performance for photon-energies below 250 eV . In addition, XPS surface analysis was used to cross-check the obtained results.

  • 18.
    Ehn, Sebastian
    et al.
    Tech Univ Munich, Phys Dept, Lehrstuhl Biomed Phys, James Franck Str, D-85748 Garching, Germany.
    Epple, Franz Michael
    Tech Univ Munich, Phys Dept, Lehrstuhl Biomed Phys, James Franck Str, D-85748 Garching, Germany.
    Fehringer, Andreas
    Tech Univ Munich, Phys Dept, Lehrstuhl Biomed Phys, James Franck Str, D-85748 Garching, Germany.
    Pennicard, David
    Deutsch Elektronen Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Graafsma, Heinz
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. Deutsch Elektronen Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Noel, Peter
    Tech Univ Munich, Phys Dept, Lehrstuhl Biomed Phys, James Franck Str, D-85748 Garching, Germany.
    Pfeiffer, Franz
    Tech Univ Munich, Phys Dept, Lehrstuhl Biomed Phys, James Franck Str, D-85748 Garching, Germany.
    X-ray deconvolution microscopy2016In: Biomedical Optics Express, ISSN 2156-7085, E-ISSN 2156-7085, Vol. 7, no 4, p. 1227-1239Article in journal (Refereed)
    Abstract [en]

    Recent advances in single-photon-counting detectors are enabling the development of novel approaches to reach micrometer-scale resolution in x-ray imaging. One example of such a technology are the MEDIPIX3RX-based detectors, such as the LAMBDA which can be operated with a small pixel size in combination with real-time on-chip charge-sharing correction. This characteristic results in a close to ideal, box-like point spread function which we made use of in this study. The proposed method is based on raster-scanning the sample with sub-pixel sized steps in front of the detector. Subsequently, a deconvolution algorithm is employed to compensate for blurring introduced by the overlap of pixels with a well defined point spread function during the raster-scanning. The presented approach utilizes standard laboratory x-ray equipment while we report resolutions close to 10 mu m. The achieved resolution is shown to follow the relationship p/n with the pixel-size p of the detector and the number of raster-scanning steps n. (C) 2016 Optical Society of America

  • 19.
    Graafsma, Heinz
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Hybrid pixel array detectors enter the low noise regime2016In: Journal of Synchrotron Radiation, ISSN 0909-0495, E-ISSN 1600-5775, Vol. 23, no 2, p. 383-384Article in journal (Refereed)
  • 20.
    Graafsma, Heinz
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. Deutsches Elektronen-Sychrotron (DESY), Hamburg, Germany .
    Wunderer, C. B.
    Deutsches Elektronen-Sychrotron (DESY), Hamburg, Germany .
    Marras, A.
    Deutsches Elektronen-Sychrotron (DESY), Hamburg, Germany .
    Viefhaus, J.
    Deutsches Elektronen-Sychrotron (DESY), Hamburg, Germany .
    Lange, S.
    Deutsches Elektronen-Sychrotron (DESY), Hamburg, Germany .
    Viti, M.
    Deutsches Elektronen-Sychrotron (DESY), Hamburg, Germany .
    Bayer, M.
    Deutsches Elektronen-Sychrotron (DESY), Hamburg, Germany .
    Hirsemann, H.
    Deutsches Elektronen-Sychrotron (DESY), Hamburg, Germany .
    Nilson, B.
    Deutsches Elektronen-Sychrotron (DESY), Hamburg, Germany .
    Smoljanin, S.
    Deutsches Elektronen-Sychrotron (DESY), Hamburg, Germany .
    Shevyakov, I.
    Deutsches Elektronen-Sychrotron (DESY), Hamburg, Germany .
    Zimmer, M.
    Deutsches Elektronen-Sychrotron (DESY), Hamburg, Germany .
    Goettlicher, P.
    Deutsches Elektronen-Sychrotron (DESY), Hamburg, Germany .
    Turchetta, R.
    Science and Technology Faculties Council-Rutherford Appleton Lab (STFC-RAL), Didcot (Oxford), United Kingdom.
    Guerrini, N.
    Science and Technology Faculties Council-Rutherford Appleton Lab (STFC-RAL), Didcot (Oxford), United Kingdom.
    Marsh, B.
    Science and Technology Faculties Council-Rutherford Appleton Lab (STFC-RAL), Didcot (Oxford), United Kingdom.
    Sedgwick, I.
    Science and Technology Faculties Council-Rutherford Appleton Lab (STFC-RAL), Didcot (Oxford), United Kingdom.
    Gasiorek, P.
    Science and Technology Faculties Council-Rutherford Appleton Lab (STFC-RAL), Didcot (Oxford), United Kingdom.
    Menk, R.
    ELETTRA - Sincrotrone Trieste S. C. P. A., Trieste, Italy .
    Stebel, L.
    ELETTRA - Sincrotrone Trieste S. C. P. A., Trieste, Italy .
    Farina, S.
    ELETTRA - Sincrotrone Trieste S. C. P. A., Trieste, Italy .
    Yousef, H.
    ELETTRA - Sincrotrone Trieste S. C. P. A., Trieste, Italy .
    Cautero, G.
    ELETTRA - Sincrotrone Trieste S. C. P. A., Trieste, Italy .
    Giuressi, D.
    ELETTRA - Sincrotrone Trieste S. C. P. A., Trieste, Italy .
    Tartoni, N.
    Diamond Light Source (DLS), Didcot, United Kingdom.
    Marchal, J.
    Diamond Light Source (DLS), Didcot, United Kingdom.
    Nicholls, T.
    Science and Technology Faculties Council-Rutherford Appleton Lab (STFC-RAL), Didcot (Oxford), United Kingdom .
    PERCIVAL soft X-ray imager2013In: IEEE Nuclear Science Symposium Conference Record, IEEE conference proceedings, 2013, p. Art. no. 6829506-Conference paper (Refereed)
    Abstract [en]

    Our goal is to provide the scientific community with a large (10cm × 10cm) pixellated detector featuring a large dynamic range (1-105 photons), good spatial resolution (27μm), good Quantum Efficiency (QE) in the low energy range (250eV-1keV), variable readout speed (up to 120 frames/s), i.e. with characteristics compatible with user needs at today's of low-energy Free Electron Lasers (FEL) and synchrotron sources. © 2013 IEEE.

  • 21.
    Greiffenberg, D.
    et al.
    Paul-Scherrer-Institut (PSI), Villigen, Switzerland .
    Becker, J.
    Deutsches Elektronensynchrotron (DESY), Hamburg, Germany.
    Bianco, L.
    Deutsches Elektronensynchrotron (DESY), Hamburg, Germany.
    Dinapoli, R.
    Paul-Scherrer-Institut (PSI), Villigen, Switzerland .
    Goettlicher, P.
    Deutsches Elektronensynchrotron (DESY), Hamburg, Germany.
    Graafsma, Heinz
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. Deutsches Elektronensynchrotron (DESY), Hamburg, Germany.
    Hirsemann, H.
    Deutsches Elektronensynchrotron (DESY), Hamburg, Germany.
    Jack, S.
    Deutsches Elektronensynchrotron (DESY), Hamburg, Germany.
    Klanner, R.
    University of Hamburg, Hamburg, Germany.
    Klyuev, A.
    Deutsches Elektronensynchrotron (DESY), Hamburg, Germany .
    Krüger, H.
    University of Bonn, Bonn, Germany.
    Lange, S.
    Deutsches Elektronensynchrotron (DESY), Hamburg, Germany .
    Marras, A.
    Deutsches Elektronensynchrotron (DESY), Hamburg, Germany .
    Mozzanica, A.
    Paul-Scherrer-Institut (PSI), Villigen, Switzerland .
    Rah, S.
    Deutsches Elektronensynchrotron (DESY), Hamburg, Germany .
    Schmitt, B.
    Paul-Scherrer-Institut (PSI), Villigen, Switzerland .
    Schwandt, J.
    University of Hamburg, Hamburg, Germany.
    Sheviakov, I.
    Deutsches Elektronensynchrotron (DESY), Hamburg, Germany .
    Shi, X.
    Paul-Scherrer-Institut (PSI), Villigen, Switzerland .
    Trunk, U.
    Deutsches Elektronensynchrotron (DESY), Hamburg, Germany .
    Zhang, J.
    University of Hamburg, Hamburg, Germany.
    Zimmer, M.
    Deutsches Elektronensynchrotron (DESY), Hamburg, Germany .
    Optimization of the noise performance of the AGIPD prototype chips2013In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 8, no 10, p. Art. no. P10022-Article in journal (Refereed)
    Abstract [en]

    The charge integrating readout electronics AGIPD (adaptive gain integrating pixel detector) is a hybrid detector system developed for the European XFEL. It features a threefold dynamic gain switching to be able to resolve single photons and to cover a dynamic range of 104·12.4 keV photons. As a result of dynamic gain switching, single photon resolution will be achieved in the high gain stage, while the maximum dynamic range will be reached in the low gain stage. The specification to resolve single photons requires a signal-over-noise ratio of at least 10 for a single incoming photon with an energy of 12.4 keV. When using a silicon sensor, that translates to an equivalent noise charge of less than 343 e-. Several AGIPD prototype chips have been designed and characterized, particularly focusing on the noise performance. During the testing phase, the dominant noise sources were identified and the corresponding circuit blocks were improved in the subsequent ASICs. This paper reports on the procedures to identify the dominating noise sources, the optimization process of the circuit blocks and discusses the effect of the optimization on the noise performance.© 2013 IOP Publishing Ltd and Sissa Medialab srl.

  • 22.
    Greiffenberg, D.
    et al.
    Paul-Scherrer-Institut (PSI), OFLB/006, 5232 Villigen, Switzerland .
    Becker, J.
    Deutsches Elektronensynchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany .
    Bianco, L.
    Deutsches Elektronensynchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany .
    Dinapoli, R.
    Paul-Scherrer-Institut (PSI), OFLB/006, 5232 Villigen, Switzerland .
    Goettlicher, P.
    Deutsches Elektronensynchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany .
    Graafsma, Heinz
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. Deutsches Elektronensynchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany .
    Hirsemann, H.
    Deutsches Elektronensynchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany .
    Jack, S.
    Deutsches Elektronensynchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany .
    Klanner, R.
    University of Hamburg, Mittelweg 177, 20148 Hamburg, Germany.
    Klyuev, A.
    Deutsches Elektronensynchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany .
    Krüger, H.
    University of Bonn, Regina-Pacis-Weg 3, 53012 Bonn, Germany .
    Lange, S.
    Deutsches Elektronensynchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany .
    Marras, A.
    Deutsches Elektronensynchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany .
    Mozzanica, A.
    Paul-Scherrer-Institut (PSI), OFLB/006, 5232 Villigen, Switzerland .
    Rah, S.
    Deutsches Elektronensynchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany .
    Schmitt, B.
    Paul-Scherrer-Institut (PSI), OFLB/006, 5232 Villigen, Switzerland .
    Schwandt, J.
    University of Hamburg, Mittelweg 177, 20148 Hamburg, Germany .
    Sheviakov, I.
    Deutsches Elektronensynchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany .
    Shi, X.
    Paul-Scherrer-Institut (PSI), OFLB/006, 5232 Villigen, Switzerland .
    Trunk, U.
    Deutsches Elektronensynchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany .
    Zhang, J.
    University of Hamburg, Mittelweg 177, 20148 Hamburg, Germany .
    Zimmer, M.
    Deutsches Elektronensynchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany .
    Mezza, D.
    Paul-Scherrer-Institut (PSI), OFLB/006, 5232 Villigen, Switzerland .
    Allahgholi, A.
    Paul-Scherrer-Institut (PSI), OFLB/006, 5232 Villigen, Switzerland .
    Xia, Q.
    Deutsches Elektronensynchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany .
    Towards AGIPD1.0: Optimization of the dynamic range and investigation of a pixel input protection2014In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 9, no 6, p. Art. no. P06001-Article in journal (Refereed)
    Abstract [en]

    AGIPD is a charge integrating, hybrid pixel readout ASIC, which is under development for the European XFEL [1,2]. A dynamic gain switching logic at the output of the preamplifier (preamp) is used to provide single photon resolution as well as covering a dynamic range of at least 104·12.4 keV photons [3,4]. Moreover, at each point of the dynamic range the electronics noise should be lower than the Poisson fluctuations, which is especially challenging at the points of gain switching. This paper reports on the progress of the chip design on the way to the first full-scale chip AGIPD1.0, focusing on the optimization of the dynamic range and the implementation of protection circuits at the preamplifier input to avoid pixel destruction due to high intense spots. © 2014 IOP Publishing Ltd and Sissa Medialab srl.

  • 23.
    Hatsui, Takaki
    et al.
    RIKEN, RIKEN SPring Ctr 8, Sayo, Hyogo 6795148, Japan.
    Graafsma, Heinz
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    X-ray imaging detectors for synchrotron and XFEL sources2015In: IUCRJ, ISSN 2052-2525, Vol. 2, p. 371-383Article in journal (Refereed)
    Abstract [en]

    Current trends for X-ray imaging detectors based on hybrid and monolithic detector technologies are reviewed. Hybrid detectors with photon-counting pixels have proven to be very powerful tools at synchrotrons. Recent developments continue to improve their performance, especially for higher spatial resolution at higher count rates with higher frame rates. Recent developments for X-ray free-electron laser (XFEL) experiments provide high-frame-rate integrating detectors with both high sensitivity and high peak signal. Similar performance improvements are sought in monolithic detectors. The monolithic approach also offers a lower noise floor, which is required for the detection of soft X-ray photons. The link between technology development and detector performance is described briefly in the context of potential future capabilities for X-ray imaging detectors.

  • 24.
    Khromova, A.
    et al.
    Elettra Sincrotrone Trieste, S.S. 14 km 163.5, 34149 Basovizza, Trieste, Italy; Università degli Studi di Trieste, Piazzale Europa, 1, 34128 Trieste, Italy .
    Cautero, G.
    Elettra Sincrotrone Trieste, S.S. 14 km 163.5, 34149 Basovizza, Trieste, Italy.
    Giuressi, D.
    Elettra Sincrotrone Trieste, S.S. 14 km 163.5, 34149 Basovizza, Trieste, Italy.
    Menk, R.
    Elettra Sincrotrone Trieste, S.S. 14 km 163.5, 34149 Basovizza, Trieste, Italy.
    Pinaroli, G.
    Elettra Sincrotrone Trieste, S.S. 14 km 163.5, 34149 Basovizza, Trieste, Italy.
    Stebel, L.
    Elettra Sincrotrone Trieste, S.S. 14 km 163.5, 34149 Basovizza, Trieste, Italy.
    Correa, J.
    DESY (Deutsches Elektronensynchrotron), Notkestr. 85, 22607 Hamburg, Germany; CFEL (Center for Free-Electron Laser Science), Luruper Ch. 149, 22607 Hamburg, Germany.
    Marras, A.
    DESY (Deutsches Elektronensynchrotron), Notkestr. 85, 22607 Hamburg, Germany; CFEL (Center for Free-Electron Laser Science), Luruper Ch. 149, 22607 Hamburg, Germany.
    Wunderer, C.B.
    DESY (Deutsches Elektronensynchrotron), Notkestr. 85, 22607 Hamburg, Germany; CFEL (Center for Free-Electron Laser Science), Luruper Ch. 149, 22607 Hamburg, Germany.
    Lange, S.
    DESY (Deutsches Elektronensynchrotron), Notkestr. 85, 22607 Hamburg, Germany; CFEL (Center for Free-Electron Laser Science), Luruper Ch. 149, 22607 Hamburg, Germany.
    Tennert, M.
    DESY (Deutsches Elektronensynchrotron), Notkestr. 85, 22607 Hamburg, Germany; CFEL (Center for Free-Electron Laser Science), Luruper Ch. 149, 22607 Hamburg, Germany.
    Niemann, M.
    DESY (Deutsches Elektronensynchrotron), Notkestr. 85, 22607 Hamburg, Germany; CFEL (Center for Free-Electron Laser Science), Luruper Ch. 149, 22607 Hamburg, Germany.
    Hirsemann, H.
    DESY (Deutsches Elektronensynchrotron), Notkestr. 85, 22607 Hamburg, Germany; CFEL (Center for Free-Electron Laser Science), Luruper Ch. 149, 22607 Hamburg, Germany.
    Smoljanin, S.
    DESY (Deutsches Elektronensynchrotron), Notkestr. 85, 22607 Hamburg, Germany; CFEL (Center for Free-Electron Laser Science), Luruper Ch. 149, 22607 Hamburg, Germany.
    Reza, Salim
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. DESY (Deutsches Elektronensynchrotron), Notkestr. 85, 22607 Hamburg, Germany.
    Graafsma, Heinz
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. DESY (Deutsches Elektronensynchrotron), Notkestr. 85, 22607 Hamburg, Germany.
    Göttlicher, P.
    DESY (Deutsches Elektronensynchrotron), Notkestr. 85, 22607 Hamburg, Germany.
    Shevyakov, I.
    DESY (Deutsches Elektronensynchrotron), Notkestr. 85, 22607 Hamburg, Germany.
    Supra, J.
    DESY (Deutsches Elektronensynchrotron), Notkestr. 85, 22607 Hamburg, Germany.
    Xia, Q.
    DESY (Deutsches Elektronensynchrotron), Notkestr. 85, 22607 Hamburg, Germany.
    Zimmer, M.
    DESY (Deutsches Elektronensynchrotron), Notkestr. 85, 22607 Hamburg, Germany.
    Guerrini, N.
    RAL (Rutherford Appleton Laboratory)/STFC, Didcot OX 11 OQX, U.K..
    Marsh, B.
    RAL (Rutherford Appleton Laboratory)/STFC, Didcot OX 11 OQX, U.K..
    Sedgwick, I.
    RAL (Rutherford Appleton Laboratory)/STFC, Didcot OX 11 OQX, U.K..
    Nicholls, .
    RAL (Rutherford Appleton Laboratory)/STFC, Didcot OX 11 OQX, U.K..
    Turchetta, R.
    RAL (Rutherford Appleton Laboratory)/STFC, Didcot OX 11 OQX, U.K..
    Pedersen, U.
    Elettra Sincrotrone Trieste,Trieste, Italy; Università degli Studi di Trieste, Trieste, Italy; Università degli Studi di Udine, Udine, Italy; DESY (Deutsches Elektronensynchrotron), Hamburg, Germany; CFEL (Center for Free-Electron Laser Science), Hamburg, Germany; DLS (Diamond Light Source), Didcot OX 11 ODE, U.K.; RAL (Rutherford Appleton Laboratory)/STFC, Didcot OX 11 OQX, U.K.; PAL (Pohang Accelerator Laboratory), Jigokro-127-beongil, 790 834 Pohang, Korea; j CALTECH, NASA Jet Prop Lab, Pasadena, CA 91125 U.S.A. .
    Tartoni, N.
    Elettra Sincrotrone Trieste,Trieste, Italy; Università degli Studi di Trieste, Trieste, Italy; Università degli Studi di Udine, Udine, Italy; DESY (Deutsches Elektronensynchrotron), Hamburg, Germany; CFEL (Center for Free-Electron Laser Science), Hamburg, Germany; DLS (Diamond Light Source), Didcot OX 11 ODE, U.K.; RAL (Rutherford Appleton Laboratory)/STFC, Didcot OX 11 OQX, U.K.; PAL (Pohang Accelerator Laboratory), Jigokro-127-beongil, 790 834 Pohang, Korea; j CALTECH, NASA Jet Prop Lab, Pasadena, CA 91125 U.S.A. .
    Hyun, H.J.
    PAL (Pohang Accelerator Laboratory), Jigokro-127-beongil, 790 834 Pohang, Korea.
    Kim, K.S.
    PAL (Pohang Accelerator Laboratory), Jigokro-127-beongil, 790 834 Pohang, Korea.
    Rah, S.Y.
    PAL (Pohang Accelerator Laboratory), Jigokro-127-beongil, 790 834 Pohang, Korea.
    Hoenk, M.E.
    CALTECH, NASA Jet Prop Lab, Pasadena, CA 91125 U.S.A..
    Jewell, A.D.
    CALTECH, NASA Jet Prop Lab, Pasadena, CA 91125 U.S.A..
    Jones, T.J.
    CALTECH, NASA Jet Prop Lab, Pasadena, CA 91125 U.S.A..
    Nikzad, J.
    CALTECH, NASA Jet Prop Lab, Pasadena, CA 91125 U.S.A..
    Report on recent results of the PERCIVAL soft X-ray imager2016In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 11, no November, article id C11020Article in journal (Refereed)
    Abstract [en]

    The PERCIVAL (Pixelated Energy Resolving CMOS Imager, Versatile And Large) soft X-ray 2D imaging detector is based on stitched, wafer-scale sensors possessing a thick epi-layer, which together with back-thinning and back-side illumination yields elevated quantum efficiency in the photon energy range of 125–1000 eV. Main application fields of PERCIVAL are foreseen in photon science with FELs and synchrotron radiation. This requires high dynamic range up to 105 ph @ 250 eV paired with single photon sensitivity with high confidence at moderate frame rates in the range of 10–120 Hz. These figures imply the availability of dynamic gain switching on a pixel-by-pixel basis and a highly parallel, low noise analog and digital readout, which has been realized in the PERCIVAL sensor layout. Different aspects of the detector performance have been assessed using prototype sensors with different pixel and ADC types. This work will report on the recent test results performed on the newest chip prototypes with the improved pixel and ADC architecture. For the target frame rates in the 10–120 Hz range an average noise floor of 14e− has been determined, indicating the ability of detecting single photons with energies above 250 eV. Owing to the successfully implemented adaptive 3-stage multiple-gain switching, the integrated charge level exceeds 4 centerdot 106 e− or 57000 X-ray photons at 250 eV per frame at 120 Hz. For all gains the noise level remains below the Poisson limit also in high-flux conditions. Additionally, a short overview over the updates on an oncoming 2 Mpixel (P2M) detector system (expected at the end of 2016) will be reported.

  • 25.
    Marras, A.
    et al.
    Deutsches Elektronen-Synchrotron, Photon Science - Detector Group, Hamburg, Germany .
    Allahgholi, A.
    Deutsches Elektronen-Synchrotron, Photon Science - Detector Group, Hamburg, Germany .
    Becker, J.
    Deutsches Elektronen-Synchrotron, Photon Science - Detector Group, Hamburg, Germany .
    Bianco, L.
    Deutsches Elektronen-Synchrotron, Photon Science - Detector Group, Hamburg, Germany .
    Delfs, A.
    Deutsches Elektronen-Synchrotron, Photon Science - Detector Group, Hamburg, Germany .
    Goettlicher, P.
    Deutsches Elektronen-Synchrotron, Photon Science - Detector Group, Hamburg, Germany .
    Klyuev, A.
    Deutsches Elektronen-Synchrotron, Photon Science - Detector Group, Hamburg, Germany .
    Jack, S.
    Deutsches Elektronen-Synchrotron, Photon Science - Detector Group, Hamburg, Germany .
    Lange, S.
    Deutsches Elektronen-Synchrotron, Photon Science - Detector Group, Hamburg, Germany .
    Sheviakov, I.
    Deutsches Elektronen-Synchrotron, Photon Science - Detector Group, Hamburg, Germany .
    Trunk, U.
    Deutsches Elektronen-Synchrotron, Photon Science - Detector Group, Hamburg, Germany .
    Xia, Q.
    Deutsches Elektronen-Synchrotron, Photon Science - Detector Group, Hamburg, Germany .
    Zhang, J.
    Deutsches Elektronen-Synchrotron, Photon Science - Detector Group, Hamburg, Germany .
    Zimmer, M.
    Deutsches Elektronen-Synchrotron, Photon Science - Detector Group, Hamburg, Germany .
    Dinapoli, R.
    Paul-Scherrer-Institut, SLS Detector Group, Villigen, Switzerland .
    Greiffenberg, D.
    Paul-Scherrer-Institut, SLS Detector Group, Villigen, Switzerland .
    Mezza, D.
    Paul-Scherrer-Institut, SLS Detector Group, Villigen, Switzerland .
    Mozzanica, A.
    Paul-Scherrer-Institut, SLS Detector Group, Villigen, Switzerland .
    Schmitt, B.
    Paul-Scherrer-Institut, SLS Detector Group, Villigen, Switzerland .
    Shi, X.
    Paul-Scherrer-Institut, SLS Detector Group, Villigen, Switzerland .
    Klanner, R.
    University of Hamburg, Hamburg, Germany.
    Schwandt, J.
    University of Hamburg, Hamburg, Germany.
    Graafsma, Heinz
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. Deutsches Elektronen-Synchrotron, Photon Science - Detector Group, Hamburg, Germany .
    Vertically integrated circuits: Example of an application to an x-ray detector2014In: 2014 21st IEEE International Conference on Electronics, Circuits and Systems, ICECS 2014, 2014, p. 243-246Conference paper (Refereed)
    Abstract [en]

    Replacing planar circuits with vertically integrated ones allows to increment circuit functionalities on a given silicon area, while avoiding some of the problems associated with aggressively scaled technology nodes. This is particularly true for applications likely to subject circuits to high doses of ionizing radiation (such of x-ray detectors to be used in synchrotron rings and Free Electron Lasers), since the degradation mechanisms of some of the innovative materials to be used in most recent nodes have not been fully characterized yet. In this paper, an evolution is presented for the readout ASIC of a pixelated x-ray detector to be used for such applications. The readout circuit is distributed in a stack of two vertically interconnected tiers, thus doubling the circuitry resident in each pixel without increasing the pixel pitch (and thus compromising spatial resolution of the detector). A first prototype has been designed and manufactured, using a commercial 130 nm CMOS technology. Design issues are discussed, along with preliminary characterization results. © 2014 IEEE.

  • 26.
    Marras, A.
    et al.
    Deutsches Elektronen-Synchrotron, Hamburg, Germany .
    Trunk, U.
    Deutsches Elektronen-Synchrotron, Hamburg, Germany .
    Klyuev, A.
    Deutsches Elektronen-Synchrotron, Hamburg, Germany .
    Becker, J.
    Deutsches Elektronen-Synchrotron, Hamburg, Germany .
    Graafsma, Heinz
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. Deutsches Elektronen-Synchrotron, Hamburg, Germany .
    Shi, X.
    Paul Schrerrer Institute, Villigen, Switzerland .
    Greiffenberg, D.
    Paul Schrerrer Institute, Villigen, Switzerland .
    Schmitt, B.
    Paul Schrerrer Institute, Villigen, Switzerland .
    Front end electronics for European XFEL sensor: The AGIPD project2013In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, E-ISSN 1872-9576, Vol. 731, p. 79-82Article in journal (Refereed)
    Abstract [en]

    The AGIPD (Adaptive Gain Integrating Pixel Detector) is a detector under development, to be used in the European X-ray Free-Electron Laser (XFEL). The constraints imposed by the XFEL source are discussed, and the solutions implemented to cope with them are explained. The present status of the project is reported, along with results achieved in terms of noise, memory depth, and radiation tolerance. © 2013 Elsevier B.V.

  • 27.
    Marras, A.
    et al.
    Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany.
    Wunderer, C.B.
    Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany.
    Bayer, M.
    Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany.
    Correa, J.
    Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany.
    Goettlicher, P.
    Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany.
    Lange, S.
    Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany.
    Shevyakov, I.
    Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany.
    Smoljanin, S.
    Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany.
    Viti, M.
    Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany.
    Xia, Q.
    Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany.
    Zimmer, M.
    Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany.
    Das, D.
    Science & Technology Faculties (STFC), Didcot, U.K.
    Guerrini, N.
    Science & Technology Faculties (STFC), Didcot, U.K.
    Marsh, B.
    Science & Technology Faculties (STFC), Didcot, U.K.
    Sedgwick, I.
    Science & Technology Faculties (STFC), Didcot, U.K.
    Turchetta, R.
    Science & Technology Faculties (STFC), Didcot, U.K.
    Cautero, G.
    ELETTRA Sincrotrone Trieste, Trieste, Italy.
    Giuressi, D.
    ELETTRA Sincrotrone Trieste, Trieste, Italy.
    Khromova, A.
    ELETTRA Sincrotrone Trieste, Trieste, Italy.
    Menk, R.
    ELETTRA Sincrotrone Trieste, Trieste, Italy.
    Stebel, L.
    ELETTRA Sincrotrone Trieste, Trieste, Italy.
    Fan, R.
    Diamond Light Source (DLS), Didcot, U.K.
    Marchal, J.
    Diamond Light Source (DLS), Didcot, U.K.
    Pedersen, U.
    Diamond Light Source (DLS), Didcot, U.K.
    Rees, N.
    Diamond Light Source (DLS), Didcot, U.K.
    Steadman, P.
    Sussmuth, M.
    Tartoni, N.
    Diamond Light Source (DLS), Didcot, U.K.
    Yousef, H.
    Diamond Light Source (DLS), Didcot, U.K.
    Hyun, H.
    Pohang Accelerator Lab (PAL), Pohang, South Korea.
    Kim, K.
    Pohang Accelerator Lab (PAL), Pohang, South Korea.
    Rah, S.
    Pohang Accelerator Lab (PAL), Pohang, South Korea.
    Reza, Salim
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. Deutsches Elektronen-Synchrotron (DESY).
    Graafsma, Heinz
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany.
    Experimental characterization of the PERCIVAL soft X-ray detector2016In: 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2015, Institute of Electrical and Electronics Engineers (IEEE), 2016, article id 7581940Conference paper (Other academic)
    Abstract [en]

    Considerable interest has been manifested for the use of high-brilliance X-ray synchrotron sources and X-ray Free-Electron Lasers for the investigation of samples.

  • 28.
    Marras, Alessandro
    et al.
    Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany; Center for Free Electron Laser Science (CFEL), Hamburg, Germany.
    Wunderer, Cornelia
    Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany; Center for Free Electron Laser Science (CFEL), Hamburg, Germany.
    Correa, Jonathan
    Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany; Center for Free Electron Laser Science (CFEL), Hamburg, Germany.
    Boitrelle, Benjamin
    Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany; Center for Free Electron Laser Science (CFEL), Hamburg, Germany; SOLEIL Synchrotron, Saint Aubin, France.
    Goettlicher, Peter
    Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany.
    Kuhn, Manuela
    Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany; Center for Free Electron Laser Science (CFEL), Hamburg, Germany.
    Krivan, Frantisek
    Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany.
    Lange, Sabine
    Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany; Center for Free Electron Laser Science (CFEL), Hamburg, Germany.
    Okrent, Frank
    Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany; Center for Free Electron Laser Science (CFEL), Hamburg, Germany.
    Shevyakov, Igor
    Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany.
    Supra, Joshua
    Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany.
    Tennert, Maximilian
    Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany.
    Zimmer, Manfred
    Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany.
    Guerrini, Nicola
    cience & Technology Faculties (STFC), Didcot, U.K; Rutherford Appleton Laboratory (RAL), Didcot, U.K.
    Marsh, Ben
    cience & Technology Faculties (STFC), Didcot, U.K; Rutherford Appleton Laboratory (RAL), Didcot, U.K.
    Sedgwick, Iain
    cience & Technology Faculties (STFC), Didcot, U.K; Rutherford Appleton Laboratory (RAL), Didcot, U.K.
    Cautero, Guiseppe
    ELETTRA Sincrotrone Trieste, Trieste, Italy.
    Giuressi, Dario
    ELETTRA Sincrotrone Trieste, Trieste, Italy.
    Khromova, Antastasya
    ELETTRA Sincrotrone Trieste, Trieste, Italy.
    Menk, Ralf
    ELETTRA Sincrotrone Trieste, Trieste, Italy.
    Pinaroli, Giovanni
    ELETTRA Sincrotrone Trieste, Trieste, Italy; Udine University, Udine, Italy.
    Stebel, Luigi
    ELETTRA Sincrotrone Trieste, Trieste, Italy.
    Greer, Alan
    Diamond Light Source (DLS), Didcot, U.K.
    Nicholls, Tim
    Center for Free Electron Laser Science (CFEL), Hamburg, Germany.
    Pedersen, Ulrik
    Pohang Accelerator Lab (PAL), Pohang, South Korea.
    Tartoni, Nicola
    Pohang Accelerator Lab (PAL), Pohang, South Korea.
    Hyun, Hyo Jung
    SOLEIL Synchrotron, Saint Aubin, France.
    Kim, Kyung Sook
    SOLEIL Synchrotron, Saint Aubin, France.
    Rah, Seung Yu
    SOLEIL Synchrotron, Saint Aubin, France.
    Graafsma, Heinz
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany; Center for Free Electron Laser Science (CFEL), Hamburg, Germany.
    Percival: A soft x-ray imager for synchrotron rings and free electron lasers2019In: AIP Conference Proceedings, American Institute of Physics (AIP), 2019, Vol. 2054, article id 060060Conference paper (Refereed)
    Abstract [en]

    In this paper, we are presenting the Percival detector, a monolithic CMOS Imager for detection of soft x-rays in Synchrotron Rings and Free Electron Lasers. The imager consists in a 2D array of many (2M) small (27um pitch) pixels, without dead or blind zones in the imaging area. The imager achieves low noise and high dynamic range by means of an adaptive-gain in-pixel circuitry, that has been validated on prototypes. The imager features on-chip Analogue-to-Digital conversion to 12+1 bits, and has a readout speed which is compatible with most of Free Electron Laser Facilities. For direct detection of low-energy x-rays, the imager is back-illuminated and post-processed to achieve 100% fill factor. 

  • 29.
    Mezza, D.
    et al.
    Paul-Scherrer-Institute (PSI), Villigen, Switzerland.
    Allahgholi, A.
    Deutsches Elektronensynchrotron DESY, Hamburg, Germany.
    Arino-Estrada, G.
    Deutsches Elektronensynchrotron DESY, Hamburg, Germany.
    Bianco, L.
    Deutsches Elektronensynchrotron DESY, Hamburg, Germany.
    Delfs, A.
    Deutsches Elektronensynchrotron DESY, Hamburg, Germany.
    Dinapoli, R.
    Paul-Scherrer-Institute (PSI), Villigen, Switzerland.
    Goettlicher, P.
    Deutsches Elektronensynchrotron DESY, Hamburg, Germany.
    Graafsma, Heinz
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. Deutsches Elektronensynchrotron DESY, Hamburg, Germany.
    Greiffenberg, D.
    Paul-Scherrer-Institute (PSI), Villigen, Switzerland.
    Hirsemann, H.
    Deutsches Elektronensynchrotron DESY, Hamburg, Germany.
    Jack, S.
    Deutsches Elektronensynchrotron DESY, Hamburg, Germany.
    Klanner, R.
    University of Hamburg, Hamburg, Germany.
    Klyuev, A.
    Deutsches Elektronensynchrotron DESY, Hamburg, Germany.
    Krueger, H.
    University of Bonn, Bonn, Germany.
    Marras, A.
    Deutsches Elektronensynchrotron DESY, Hamburg, Germany.
    Mozzanica, A.
    Paul-Scherrer-Institute (PSI), Villigen, Switzerland.
    Poehlsen, J.
    Deutsches Elektronensynchrotron DESY, Hamburg, Germany.
    Schmitt, B.
    Paul-Scherrer-Institute (PSI), Villigen, Switzerland.
    Schwandt, J.
    University of Hamburg, Hamburg, Germany.
    Sheviakov, I.
    Deutsches Elektronensynchrotron DESY, Hamburg, Germany.
    Shi, X.
    Paul-Scherrer-Institute (PSI), Villigen, Switzerland.
    Trunk, U.
    Deutsches Elektronensynchrotron DESY, Hamburg, Germany.
    Xia, Q.
    Deutsches Elektronensynchrotron DESY, Hamburg, Germany.
    Zhang, J.
    Paul-Scherrer-Institute (PSI), Villigen, Switzerland.
    Zimmer, M.
    Deutsches Elektronensynchrotron DESY, Hamburg, Germany.
    Characterization of AGIPD1.0: The full scale chip2016In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, E-ISSN 1872-9576, Vol. 838, p. 39-46Article in journal (Refereed)
    Abstract [en]

    The AGIPD (adaptive gain integrating pixel detector) detector is a high frame rate (4.5 MHz) and high dynamic range (up to 104 ·12.4 keV photons) detector with single photon resolution (down to 4 keV taking 5σ as limit and lowest noise settings) developed for the European XFEL (XFEL.EU). This work is focused on the characterization of AGIPD1.0, which is the first full scale version of the chip. The chip is 64×64 pixels and each pixel has a size of 200×200 μm2. Each pixel can store up to 352 images at a rate of 4.5 MHz (corresponding to 220 ns). A detailed characterization of the AGIPD1.0 chip has been performed in order to assess the main performance of the ASIC in terms of gain, noise, speed and dynamic range. From the measurements presented in this paper a good uniformity of the gain, a noise around 320 e− (rms) in standard mode and around 240 e− (rms) in high gain mode has been measured. Furthermore a detailed discussion about the non-linear behavior after the gain switching is presented with both experimental results and simulations.

  • 30.
    Mezza, D.
    et al.
    Paul-Scherrer-Institute (PSI), Villigen, Switzerland.
    Allahgholi, A.
    Deutsches Elektronensynchrotron DESY, Hamburg, Germany.
    Becker, J.
    Deutsches Elektronensynchrotron DESY, Hamburg, Germany.
    Delfs, A.
    Deutsches Elektronensynchrotron DESY, Hamburg, Germany.
    Dinapoli, R.
    Paul-Scherrer-Institute (PSI), Villigen, Switzerland.
    Goettlicher, P.
    Deutsches Elektronensynchrotron DESY, Hamburg, Germany.
    Graafsma, Heinz
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. Deutsches Elektronensynchrotron DESY, Hamburg, Germany.
    Greiffenberg, D.
    Paul-Scherrer-Institute (PSI), Villigen, Switzerland.
    Hirsemann, H.
    Deutsches Elektronensynchrotron DESY, Hamburg, Germany.
    Klyuev, A.
    Deutsches Elektronensynchrotron DESY, Hamburg, Germany.
    Kuhn, M.
    Deutsches Elektronensynchrotron DESY, Hamburg, Germany.
    Lange, S.
    Deutsches Elektronensynchrotron DESY, Hamburg, Germany.
    Laurus, T.
    Deutsches Elektronensynchrotron DESY, Hamburg, Germany.
    Marras, A.
    Deutsches Elektronensynchrotron DESY, Hamburg, Germany.
    Mozzanica, A.
    Paul-Scherrer-Institute (PSI), Villigen, Switzerland.
    Poehlsen, J.
    Deutsches Elektronensynchrotron DESY, Hamburg, Germany.
    Ruder, C.
    Paul-Scherrer-Institute (PSI), Villigen, Switzerland.
    Schmitt, B.
    Paul-Scherrer-Institute (PSI), Villigen, Switzerland.
    Schwandt, J.
    University of Hamburg, Hamburg, Germany.
    Sheviakov, I.
    Deutsches Elektronensynchrotron DESY, Hamburg, Germany.
    Shi, X.
    Paul-Scherrer-Institute (PSI), Villigen, Switzerland.
    Trunk, U.
    Deutsches Elektronensynchrotron DESY, Hamburg, Germany.
    Zhang, J.
    Paul-Scherrer-Institute (PSI), Villigen, Switzerland.
    Zimmer, M.
    Deutsches Elektronensynchrotron DESY, Hamburg, Germany.
    Characterization of the AGIPD1.1 readout chip and improvements with respect to AGIPD1.02019In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, E-ISSN 1872-9576, Vol. 945, article id 162606Article in journal (Refereed)
    Abstract [en]

    AGIPD, the Adaptive Gain Integrating Pixel Detector, is a hybrid detector with a frame rate of 4.5 MHz, a dynamic range up to 104⋅ 12.4 keV photons, as well as single photon resolution, developed for the European XFEL (Eu.XFEL). The final 1 Mpixel detector system consists of 16 tiled modules each one with 16 readout chips. The single ASIC is 64 x 64 pixels, each with a size of 200 x 200 μm2. Each pixel can store up to 352 images. This work is focused on the characterization of AGIPD1.1, the second version of the full scale ASIC, and the improvements with respect to AGIPD1.0. From the measurements presented in this paper we show that the flaws observed in AGIPD1.0 (i.e. ghosting, crosstalk, slow readout speed) have been fixed in AGIPD1.1. In addition the main performance parameters such as noise, dynamic range and so on were measured for the new version of the ASIC and will be summarized. 

  • 31.
    Mezza, D.
    et al.
    Paul-Scherrer-Institut (PSI), OFLC/001, Villigen, Switzerland.
    Allahgholi, A.
    Deutsches Elektronensynchrotron (DESY), Notkestr. 85, Hamburg, Germany.
    Delfs, A.
    Deutsches Elektronensynchrotron (DESY), Notkestr. 85, Hamburg, Germany.
    Dinapoli, R.
    Paul-Scherrer-Institut (PSI), OFLC/001, Villigen, Switzerland.
    Goettlicher, P.
    Deutsches Elektronensynchrotron (DESY), Notkestr. 85, Hamburg, Germany.
    Graafsma, Heinz
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. Deutsches Elektronensynchrotron (DESY), Notkestr. 85, Hamburg, Germany.
    Greiffenberg, D.
    Paul-Scherrer-Institut (PSI), OFLC/001, Villigen, Switzerland.
    Hirsemann, H.
    Deutsches Elektronensynchrotron (DESY), Notkestr. 85, Hamburg, Germany.
    Klyuev, A.
    Deutsches Elektronensynchrotron (DESY), Notkestr. 85, Hamburg, Germany.
    Laurus, T.
    Deutsches Elektronensynchrotron (DESY), Notkestr. 85, Hamburg, Germany.
    Marras, A.
    Deutsches Elektronensynchrotron (DESY), Notkestr. 85, Hamburg, Germany.
    Mozzanica, A.
    Paul-Scherrer-Institut (PSI), OFLC/001, Villigen, Switzerland.
    Perova, I.
    Deutsches Elektronensynchrotron (DESY), Notkestr. 85, Hamburg, Germany.
    Poehlsen, J.
    Deutsches Elektronensynchrotron (DESY), Notkestr. 85, Hamburg, Germany.
    Schmitt, B.
    Paul-Scherrer-Institut (PSI), OFLC/001, Villigen, Switzerland.
    Sheviakov, I.
    Deutsches Elektronensynchrotron (DESY), Notkestr. 85, Hamburg, Germany.
    Shi, X.
    Paul-Scherrer-Institut (PSI), OFLC/001, Villigen, Switzerland.
    Trunk, U.
    Deutsches Elektronensynchrotron (DESY), Notkestr. 85, Hamburg, Germany.
    Xia, Q.
    Deutsches Elektronensynchrotron (DESY), Notkestr. 85, Hamburg, Germany.
    Zhang, J.
    Paul-Scherrer-Institut (PSI), OFLC/001, Villigen, Switzerland.
    Zimmer, M.
    Deutsches Elektronensynchrotron (DESY), Notkestr. 85, Hamburg, Germany.
    New calibration circuitry and concept for AGIPD2016In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 11, no 11, article id C11019Article in journal (Refereed)
    Abstract [en]

    AGIPD (adaptive gain integrating pixel detector) is a detector system developed for the European XFEL (XFEL.EU), which is currently being constructed in Hamburg, Germany. The XFEL.EU will operate with bunch trains at a repetition rate of 10 Hz. Each train consists of 2700 bunches with a temporal separation of 220 ns corresponding to a rate of 4.5 MHz. Each photon pulse has a duration of &lt; 100 fs (rms) and contains up to 1012 photons in an energy range between 0.25 and 25 keV . In order to cope with the large dynamic range, the first stage of each bump-bonded AGIPD ASIC is a charge sensitive preamplifier with three different gain settings that are dynamically switched during the charge integration. Dynamic gain switching allows single photon resolution in the high gain stage and can cover a dynamic range of 104 × 12.4 keV photons in the low gain stage. The burst structure of the bunch trains forces to have an intermediate in-pixel storage of the signals. The full scale chip has 352 in-pixel storage cells inside the pixel area of 200 × 200 μm2. This contribution will report on the measurements done with the new calibration circuitry of the AGIPD1.1 chip (without sensor). These results will be compared with the old version of the chip (AGIPD1.0). A new calibration method (that is not AGIPD specific) will also be shown.

  • 32.
    Pennicard, David
    et al.
    Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany.
    Smoljanin, S.
    Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany.
    Pithan, F.
    Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany.
    Sarajlic, M.
    Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany.
    Rothkirch, A.
    Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany.
    Yu, Y.
    Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany.
    Liermann, H. P.
    Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany.
    Morgenroth, W.
    Institute of Geosciences, Goethe University of Frankfurt, Frankfurt am Main, Germany.
    Winkler, B.
    Institute of Geosciences, Goethe University of Frankfurt, Frankfurt am Main, Germany.
    Jenei, Z.
    Lawrence Livermore National Laboratory, Livermore, CA, United States.
    Stawitz, H.
    X-Spectrum GmbH, Hamburg, Germany.
    Becker, J.
    Cornell University, Ithaca, NY, United States; X-Spectrum GmbH, Hamburg, Germany.
    Graafsma, Heinz
    Mid Sweden University. Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany.
    LAMBDA 2M GaAs - A multi-megapixel hard X-ray detector for synchrotrons2018In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 13, no 1, article id C01026Article in journal (Refereed)
    Abstract [en]

    Synchrotrons can provide very intense and focused X-ray beams, which can be used to study the structure of matter down to the atomic scale. In many experiments, the quality of the results depends strongly on detector performance; in particular, experiments studying dynamics of samples require fast, sensitive X-ray detectors. "LAMBDA" is a photon-counting hybrid pixel detector system for experiments at synchrotrons, based on the Medipix3 readout chip. Its main features are a combination of comparatively small pixel size (55 μm), high readout speed at up to 2000 frames per second with no time gap between images, a large tileable module design, and compatibility with high-Z sensors for efficient detection of higher X-ray energies. A large LAMBDA system for hard X-ray detection has been built using Cr-compensated GaAs as a sensor material. The system is composed of 6 GaAs tiles, each of 768 by 512 pixels, giving a system with approximately 2 megapixels and an area of 8.5 by 8.5 cm2. While the sensor uniformity of GaAs is not as high as that of silicon, its behaviour is stable over time, and it is possible to correct nonuniformities effectively by postprocessing of images. By using multiple 10 Gigabit Ethernet data links, the system can be read out at the full speed of 2000 frames per second. The system has been used in hard X-ray diffraction experiments studying the structure of samples under extreme pressure in diamond anvil cells. These experiments can provide insight into geological processes. Thanks to the combination of high speed readout, large area and high sensitivity to hard X-rays, it is possible to obtain previously unattainable information in these experiments about atomic-scale structure on a millisecond timescale during rapid changes of pressure or temperature. 

  • 33.
    Sarajlic, M.
    et al.
    Deutsch Elektronen Synchrotron DESY, Ctr Free Electron Laser Sci CFEL, Photon Sci Detector Grp, Hamburg, Germany.
    Pennicard, D.
    Deutsch Elektronen Synchrotron DESY, Ctr Free Electron Laser Sci CFEL, Photon Sci Detector Grp, Hamburg, Germany.
    Smoljanin, S.
    Deutsch Elektronen Synchrotron DESY, Ctr Free Electron Laser Sci CFEL, Photon Sci Detector Grp, Hamburg, Germany.
    Fritzsch, T.
    IZM, Fraunhofer Inst Reliabil & Microintegrat, Berlin, Germany.
    Zoschke, K.
    IZM, Fraunhofer Inst Reliabil & Microintegrat, Berlin, Germany.
    Graafsma, Heinz
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. Deutsch Elektronen Synchrotron DESY, Ctr Free Electron Laser Sci CFEL, Photon Sci Detector Grp, Hamburg, Germany.
    Progress on TSV technology for Medipix3RX chip2017In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 12, article id C12042Article in journal (Refereed)
    Abstract [en]

    The progress of Through Silicon Via (TSV) technology for Medipix3RX chip done at DESY is presented here. The goal of this development is to replace the wire bonds in X-ray detectors with TSVs, in order to reduce the dead area between detectors. We obtained the first working chips assembled together with Si based sensors for X-ray detection. The 3D integration technology, including TSV, Re-distribution layer deposition, bump bonding to the Si sensor and bump bonding to the carrier PCB, was done by Fraunhofer Institute IZM in Berlin. After assembly, the module was successfully tested by recording background radiation and making X-ray images of small objects. The active area of the Medipix3RX chip is 14.1 mm x 14.1 mm or 256 x 256 pixels. During TSV processing, the Medipix3RX chip was thinned from 775 mu m original thickness, to 130 mu m. The diameter of the vias is 40 mu m, and the pitch between the vias is 120 mu m. A liner filling approach was used to contact the TSV with the RDL on the backside of the Medipix3RX readout chip.

  • 34.
    Sarajlić, M.
    et al.
    Deutsches Elektronen-Synchrotron (DESY), Germany.
    Pennicard, D.
    Deutsches Elektronen-Synchrotron (DESY), Germany.
    Smoljanin, S.
    Deutsches Elektronen-Synchrotron (DESY), Germany.
    Hirsemann, H.
    Deutsches Elektronen-Synchrotron (DESY), Germany.
    Struth, B.
    Deutsches Elektronen-Synchrotron (DESY), Germany.
    Fritzsch, T.
    Fraunhofer Institute for Reliability and Microintegration, Germany.
    Rothermund, M.
    Fraunhofer Institute for Reliability and Microintegration, Germany.
    Zuvic, M.
    Mirion Technologies (Canberra), France.
    Lampert, M. O.
    Mirion Technologies (Canberra), France.
    Askar, M.
    Al-Farabi Kazakh National University, Kazakhstan.
    Graafsma, Heinz
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. Deutsches Elektronen-Synchrotron (DESY), Germany.
    Germanium "hexa" detector: Production and testing2017In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 12, no 1, article id C01068Article in journal (Refereed)
    Abstract [en]

    Here we present new result on the testing of a Germanium sensor for X-ray radiation. The system is made of 3 × 2 Medipix3RX chips, bump-bonded to a monolithic sensor, and is called "hexa". Its dimensions are 45 × 30 mm2 and the sensor thickness was 1.5 mm. The total number of the pixels is 393216 in the matrix 768 × 512 with pixel pitch 55 μ m. Medipix3RX read-out chip provides photon counting read-out with single photon sensitivity. The sensor is cooled to -126°C and noise levels together with flat field response are measured. For -200 V polarization bias, leakage current was 4.4 mA (3.2 μ A/mm2). Due to higher leakage around 2.5% of all pixels stay non-responsive. More than 99% of all pixels are bump bonded correctly. In this paper we present the experimental set-up, threshold equalization procedure, image acquisition and the technique for bump bond quality estimate.

  • 35.
    Singer, A.
    et al.
    Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany.
    Lorenz, U.
    Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany.
    Marras, A.
    Center for Free-Electron Lasers, Notkestrasse 85, D-22607 Hamburg, Germany .
    Klyuev, A.
    Center for Free-Electron Lasers, Notkestrasse 85, D-22607 Hamburg, Germany .
    Becker, J.
    Center for Free-Electron Lasers, Notkestrasse 85, D-22607 Hamburg, Germany .
    Schlage, K.
    Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany .
    Skopintsev, P.
    Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany .
    Gorobtsov, O.
    Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany .
    Shabalin, A.
    Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany .
    Wille, H. -C
    Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany .
    Franz, H.
    Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany .
    Graafsma, Heinz
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. Center for Free-Electron Lasers, Notkestrasse 85, D-22607 Hamburg, Germany.
    Vartanyants, I. A.
    National Research Nuclear University, MEPhI, 115409 Moscow, Russian Federation .
    Intensity Interferometry of Single X-Ray Pulses from a Synchrotron Storage Ring2014In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 113, no 6, p. Art. no. 064801-Article in journal (Refereed)
    Abstract [en]

    We report on measurements of second-order intensity correlations at the high-brilliance storage ring PETRA III using a prototype of the newly developed adaptive gain integrating pixel detector. The detector records individual synchrotron radiation pulses with an x-ray photon energy of 14.4 keV and repetition rate of about 5 MHz. The second-order intensity correlation function is measured simultaneously at different spatial separations, which allows us to determine the transverse coherence length at these x-ray energies. The measured values are in a good agreement with theoretical simulations based on the Gaussian Schell model.

  • 36.
    Trunk, Ulrich
    et al.
    Deutsches Elektronen-Synchrotron, Germany.
    Allahgholi, A.
    Deutsches Elektronen-Synchrotron, Germany.
    Becker, J.
    Deutsches Elektronen-Synchrotron, Germany.
    Delfs, A.
    Deutsches Elektronen-Synchrotron, Germany.
    Dinapoli, R.
    Paul Scherrer Institut, Switzerland.
    Göttlicher, P.
    Deutsches Elektronen-Synchrotron, Germany.
    Graafsma, Heinz
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. Deutsches Elektronen-Synchrotron, Germany.
    Greiffenberg, D.
    Paul Scherrer Institut, Switzerland.
    Hirsemann, H.
    Deutsches Elektronen-Synchrotron, Germany.
    Jack, S.
    Deutsches Elektronen-Synchrotron, Germany.
    Klyuev, A.
    Deutsches Elektronen-Synchrotron, Germany.
    Krueger, H.
    Universität Bonn, Bonn, Germany.
    Lange, S.
    Deutsches Elektronen-Synchrotron, Germany.
    Laurus, T.
    Deutsches Elektronen-Synchrotron, Germany.
    Marras, A.
    Deutsches Elektronen-Synchrotron, Germany.
    Mezza, D.
    Paul Scherrer Institut, Switzerland.
    Mozzanica, A.
    Paul Scherrer Institut, Switzerland.
    Poehlsen, J.
    Deutsches Elektronen-Synchrotron, Germany.
    Rah, S.
    Pohang Accelerator Laboratory, Pohang, South Korea.
    Schmitt, B.
    Paul Scherrer Institut, Switzerland.
    Schwandt, J.
    Univ. Hamburg, Germany.
    Sheviakov, I.
    Deutsches Elektronen-Synchrotron, Germany.
    Shi, X.
    Paul Scherrer Institut, Switzerland.
    Xia, Q.
    Deutsches Elektronen-Synchrotron, Germany.
    Zhang, J.
    Paul Scherrer Institut, Switzerland.
    Zimmer, M.
    Deutsches Elektronen-Synchrotron, Germany.
    AGIPD: A multi megapixel, multi megahertz X-ray camera for the European XFEL2017In: Proceedings of SPIE - The International Society for Optical Engineering: SELECTED PAPERS FROM THE 31ST INTERNATIONAL CONGRESS ON HIGH-SPEED IMAGING AND PHOTONICS / [ed] Shiraga, H; Etoh, TG, SPIE - International Society for Optical Engineering, 2017, Vol. 10328, article id UNSP 1032805Conference paper (Refereed)
    Abstract [en]

    AGIPD is a hybrid pixel detector developed by DESY, PSI, and the Universities of Bonn and Hamburg. It is targeted for use at the European XFEL, a source with unique properties: a train of up to 2700 pulses is repeated at 10 Hz rate. The pulses inside a train are ≤100fs long and separated by 220 ns, containing up to 1012 photons of 12.4 keV each. The readout ASICs with 64 x 64 pixels each have to cope with these properties: Single photon sensitivity and a dynamic range up to 104 photons/pixel in the same image as well as storage for as many as possible images of a pulse train for delayed readout, prior to the next train. The high impinging photon flux also requires a very radiation hard design of sensor and ASIC, which uses 130 nm CMOS technology and radiation tolerant techniques. The signal path inside a pixel of the ASIC consists of a charge sensitive preamplifier with 3 individual gains, adaptively selected by a subsequent discriminator. The preamp also feeds to a correlated double sampling stage, which writes to an analogue memory to record 352 frames. It is random-access, so it can be used most efficiently by overwriting bad or empty images. Encoded gain information is stored to a similar memory. Readout of these memories is via a common charge sensitive amplifier in each pixel, and multiplexers on four differential ports. Operation of the ASIC is controlled via a command interface, using 3 LVDS lines. It also serves to configure the chip's operational parameters and timings.

  • 37.
    Viti, M.
    et al.
    DESY, Ctr Free Electron Laser Sci, D-22607 Hamburg, Germany..
    Bayer, M.
    DESY, Ctr Free Electron Laser Sci, D-22607 Hamburg, Germany..
    Correa, J.
    DESY, Ctr Free Electron Laser Sci, D-22607 Hamburg, Germany..
    Goettlicher, P.
    DESY, D-22607 Hamburg, Germany..
    Lange, S.
    DESY, Ctr Free Electron Laser Sci, D-22607 Hamburg, Germany..
    Marras, A.
    DESY, Ctr Free Electron Laser Sci, D-22607 Hamburg, Germany..
    Shevyakov, I.
    DESY, D-22607 Hamburg, Germany..
    Smoljanin, S.
    DESY, Ctr Free Electron Laser Sci, D-22607 Hamburg, Germany..
    Tennert, M.
    DESY, Ctr Free Electron Laser Sci, D-22607 Hamburg, Germany..
    Wunderer, C. B.
    DESY, Ctr Free Electron Laser Sci, D-22607 Hamburg, Germany..
    Xia, Q.
    DESY, D-22607 Hamburg, Germany..
    Zimmer, M.
    DESY, D-22607 Hamburg, Germany..
    Das, D.
    Rutherford Appleton Lab STFC, Didcot OX11 0QX, Oxon, England..
    Guerrini, N.
    Rutherford Appleton Lab STFC, Didcot OX11 0QX, Oxon, England..
    Marsh, B.
    Rutherford Appleton Lab STFC, Didcot OX11 0QX, Oxon, England..
    Sedgwick, I.
    Rutherford Appleton Lab STFC, Didcot OX11 0QX, Oxon, England..
    Turchetta, R.
    Rutherford Appleton Lab STFC, Didcot OX11 0QX, Oxon, England..
    Cautero, G.
    Elettra Sincrotrone Trieste, I-34149 Trieste, Italy..
    Gianoncelli, A.
    Elettra Sincrotrone Trieste, I-34149 Trieste, Italy..
    Giuressi, D.
    Elettra Sincrotrone Trieste, I-34149 Trieste, Italy..
    Menk, R.
    Elettra Sincrotrone Trieste, I-34149 Trieste, Italy..
    Stebel, L.
    Elettra Sincrotrone Trieste, I-34149 Trieste, Italy..
    Yousef, H.
    Elettra Sincrotrone Trieste, I-34149 Trieste, Italy..
    Marchal, J.
    Diamond Light Source, Didcot OX11 ODE, Oxon, England..
    Rees, N.
    Diamond Light Source, Didcot OX11 ODE, Oxon, England..
    Tartoni, N.
    Diamond Light Source, Didcot OX11 ODE, Oxon, England..
    Graafsma, Heinz
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Spatial resolution studies for the PERCIVAL sensor2015In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 10, article id C01044Article in journal (Refereed)
    Abstract [en]

    The PERCIVAL ("Pixelated Energy Resolving CMOS Imager, Versatile and Large") is a collaboration of DESY, RAL/STFC, ELETTRA, and DLS to develop a monolithic active pixel sensor (MAPS) to provide a suitable detector for photon science for the photon energy regime between 250 eV and 1 keV. An important performance parameter is the spatial resolution which can be inferred from the Modulation Transfer Function (MTF). The MTF measures in optical systems the relative contrast of a pattern in function of the spatial frequency. With a back-thinned and back- illuminated PERCIVAL prototype chip, dedicated MTF evaluation data were taken at Elettra's TwinMic Beamline in March 2014 at a photon energy of 535 eV. We will present our MTF derivation approaches together with MTF results for 3 pixel types of the irradiated test sensor.

  • 38.
    Vonk, V.
    et al.
    Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, Netherlands.
    Graafsma, Heinz
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. Photon-Science Detector Group, Deutches Elektronen-Synchrotron, DESY, Notkestr. 85, D-22607 Hamburg, Germany.
    In-situ X-ray Diffraction at Synchrotrons and Free-Electron Laser Sources2014In: In-situ materials characterization / [ed] Ziegler, A; Graafsma, H; Zhang, XF; Frenken, J, Berlin Heidelberg: Springer, 2014, no 1, p. 39-58Chapter in book (Refereed)
    Abstract [en]

    X-ray Diffraction (XRD) is an outstanding tool for structural analyses at the atomic scale, and both the experimental techniques and the theoretical interpretations are well established. X-rays also have the advantage of being highly penetrating, as compared to electrons for instance, allowing for the study of bulk materials, or to study samples in complicated environments. The high photon fluxes available at third generation synchrotron sources make it possible to collect full diffraction patterns in relatively short times, and thus to follow time varying processes in-situ. In the frst part of this chapter we briefly discuss the advantages and disadvantages of X-rays as compared to other probes like electrons or neutrons. In the second part as an example in-situ surface X-ray diffraction studies of growing films using pulsed laser deposition (PLD) will be presented. The hetero-epitaxial growth process, especially of the first mono-layers can only be understood by in-situ diffraction studies in the PLD chamber under deposition conditions. Also high energy diffraction of buried interfaces will be discussed briefly. The final part of this chapter will present the possibilities for in-situ diffraction studies at the upcoming Free-Electron Laser sources, with fully coherent beams and sufficient intensities to collect full diffraction patterns with single 100 femto-second pulses. The characteristics of the Free-Electron-Lasers and various planned experiments will be presented. © Springer-Verlag Berlin Heidelberg 2014.

  • 39.
    Westermeier, F.
    et al.
    Max Planck Institute for the Structure and Dynamics of Matter, CFEL, Luruper Chaussee 149, Hamburg, Germany .
    Pennicard, D.
    Center for Free-Electron Laser Science, DESY, Notkestrasse 85, Hamburg, Germany .
    Hirsemann, H.
    Center for Free-Electron Laser Science, DESY, Notkestrasse 85, Hamburg, Germany .
    Wagner, U. H.
    Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom .
    Rau, C.
    Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom .
    Graafsma, Heinz
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. Center for Free-Electron Laser Science, DESY, Notkestrasse 85, Hamburg, Germany.
    Schall, P.
    Van der Waals-Zeeman Institute, University of Amsterdam, POSTBUS 94485, Amsterdam, Netherlands .
    Lettinga, M. P.
    Forschungszentrum Jülich, Institute of Complex Systems (ICS-3), Jülich, Germany .
    Struth, B.
    Center for Free-Electron Laser Science, DESY, Notkestrasse 85, Hamburg, Germany .
    Connecting structure, dynamics and viscosity in sheared soft colloidal liquids: A medley of anisotropic fluctuations2015In: Soft Matter, ISSN 1744-683X, E-ISSN 1744-6848, Vol. 12, no 1, p. 171-180Article in journal (Refereed)
    Abstract [en]

    Structural distortion and relaxation are central to any liquid flow. Their full understanding requires simultaneous probing of the mechanical as well as structural and dynamical response. We provide the first full dynamical measurement of the transient structure using combined coherent X-ray scattering and rheology on electrostatically interacting colloidal fluids. We find a stress overshoot during the start-up of shear which is due to the strong anisotropic overstretching and compression of nearest-neighbor distances. The rheological response is reflected in uncorrelated entropy-driven intensity fluctuations. While the structural distortion under steady shear is well described by Smoluchowski theory, we find an increase of the particle dynamics beyond the trivial contribution of flow. After the cessation of shear, the full fluid microstructure and dynamics are restored, both on the structural relaxation timescale. We thus find unique structure-dynamics relations in liquid flow, responsible for the macroscopic rheological behavior of the system. © The Royal Society of Chemistry.

  • 40.
    Wiedorn, Max O.
    et al.
    DESY, Hamburg, Germany; Univ Hamburg, Hamburg, Germany.
    Oberthuer, Dominik
    DESY, Hamburg, Germany.
    Bean, Richard
    European XFEL GmbH, Schenefeld, Germany.
    Schubert, Robin
    Univ Hamburg, Hamburg, Germany; Integrated Biol Infrastruct Life Sci Facil Europe, Schenefeld, Germany.
    Werner, Nadine
    Univ Hamburg, Hamburg, Germany.
    Abbey, Brian
    La Trobe Univ, Bundoora, Australia.
    Aepfelbacher, Martin
    Univ Med Ctr Hamburg Eppendorf UKE, Hamburg, Germany.
    Adriano, Luigi
    DESY, Hamburg, Germany.
    Allahgholi, Aschkan
    DESY, Hamburg, Germany.
    Al-Qudami, Nasser
    European XFEL GmbH, Schenefeld, Germany.
    Andreasson, Jakob
    Uppsala Univ, Uppsala; Czech Acad Sci, Prague, Czech Republic; Chalmers Univ Technol, Gothenburg.
    Aplin, Steve
    DESY, Hamburg, Germany.
    Awel, Salah
    DESY, Hamburg, Germany; Univ Hamburg, Hamburg, Germany.
    Ayyer, Kartik
    DESY, Hamburg, Germany.
    Bajt, Sasa
    DESY, Hamburg, Germany.
    Barak, Imrich
    DESY, Hamburg, Germany; Univ Hamburg, Hamburg, Germany.
    Bari, Sadia
    DESY, Hamburg, Germany.
    Bielecki, Johan
    European XFEL GmbH, Schenefeld, Germany.
    Botha, Sabine
    Univ Hamburg, Hamburg, Germany.
    Boukhelef, Djelloul
    European XFEL GmbH, Schenefeld, Germany.
    Brehm, Wolfgang
    DESY, Hamburg, Germany.
    Brockhauser, Sandor
    European XFEL GmbH, Schenefeld, Germany; Hungarian Acad Sci, Szeged, Hungary.
    Cheviakov, Igor
    Univ Med Ctr Hamburg Eppendorf UKE, Hamburg, Germany.
    Coleman, Matthew A.
    Lawrence Livermore Natl Lab, Livermore, CA, USA.
    Cruz-Mazo, Francisco
    Univ Seville, Seville, Spain.
    Danilevski, Cyril
    European XFEL GmbH, Schenefeld, Germany.
    Darmanin, Connie
    La Trobe Univ, Bundoora, Vic 3086, Australia.
    Doak, R. Bruce
    Max Planck Inst Med Res, Heidelberg, Germany.
    Domaracky, Martin
    DESY, Hamburg, Germany.
    Doerner, Katerina
    European XFEL GmbH, Schenefeld, Germany.
    Du, Yang
    DESY, Hamburg, Germany.
    Fangohr, Hans
    European XFEL GmbH, Schenefeld, Germany; Univ Southampton, Southampton, Hants, England.
    Fleckenstein, Holger
    DESY, Hamburg, Germany.
    Frank, Matthias
    Lawrence Livermore Natl Lab, Livermore, CA, USA.
    Fromme, Petra
    Arizona State Univ, Tempe, AZ, USA.
    Ganan-Calvo, Alfonso M.
    Univ Seville, Seville, Spain.
    Gevorkov, Yaroslav
    DESY, Hamburg, Germany; Hamburg Univ Technol, Hamburg, Germany.
    Giewekemeyer, Klaus
    European XFEL GmbH, Schenefeld, Germany.
    Ginn, Helen Mary
    Diamond Light Source, Didcot, Oxon, England; Univ Oxford, Didcot, Oxon, England.
    Graafsma, Heinz
    Mid Sweden University. DESY, Hamburg, Germany.
    Graceffa, Rita
    European XFEL GmbH, Schenefeld, Germany.
    Greiffenberg, Dominic
    Paul Scherrer Inst, Villigen, Switzerland.
    Gumprecht, Lars
    DESY, Hamburg, Germany.
    Goettlicher, Peter
    DESY, Hamburg, Germany.
    Hajdu, Janos
    Uppsala Univ, Uppsala; Czech Acad Sci, Prague, Czech Republic.
    Hauf, Steffen
    European XFEL GmbH, Schenefeld, Germany.
    Heymann, Michael
    Max Planck Inst Biochem, Martinsried, Germany.
    Holmes, Susannah
    La Trobe Univ, Bundoora, Vic 3086, Australia.
    Horke, Daniel A.
    DESY, Hamburg, Germany; Univ Hamburg, Hamburg, Germany.
    Hunter, Mark S.
    SLAC Natl Accelerator Lab, Menlo Pk, CA. USA.
    Imlau, Siegfried
    DESY, Hamburg, Germany.
    Kaukher, Alexander
    European XFEL GmbH, Schenefeld, Germany.
    Kim, Yoonhee
    European XFEL GmbH, Schenefeld, Germany.
    Klyuev, Alexander
    DESY, Hamburg, Germany.
    Knoska, Juraj
    DESY, Hamburg, Germany; Univ Hamburg, Hamburg, Germany.
    Kobe, Bostjan
    Univ Queensland, Brisbane, Qld 4072, Australia.
    Kuhn, Manuela
    DESY, Hamburg, Germany.
    Kupitz, Christopher
    Univ Wisconsin, Milwaukee, WI, USA.
    Kueper, Jochen
    DESY, Hamburg, Germany; Univ Hamburg, Hamburg, Germany.
    Lahey-Rudolph, Janine Mia
    DESY, Hamburg, Germany; Univ Lubeck, Lubeck, Germany.
    Laurus, Torsten
    DESY, Hamburg, Germany.
    Le Cong, Karoline
    Univ Hamburg, Hamburg, Germany.
    Letrun, Romain
    European XFEL GmbH, Schenefeld, Germany.
    Xavier, P. Lourdu
    DESY, Hamburg, Germany; Max Planck Inst Struct & Dynam Matter, Hamburg, Germany.
    Maia, Luis
    European XFEL GmbH, Schenefeld, Germany.
    Maia, Filipe R. N. C.
    Uppsala Univ, Uppsala; Lawrence Berkeley Natl Lab, Berkeley, CA, USA.
    Mariani, Valerio
    DESY, Hamburg, Germany.
    Messerschmidt, Marc
    European XFEL GmbH, Schenefeld, Germany.
    Metz, Markus
    DESY, Hamburg, Germany.
    Mezza, Davide
    Paul Scherrer Inst, Villigen, Switzerland.
    Michelat, Thomas
    European XFEL GmbH,Schenefeld, Germany.
    Mills, Grant
    European XFEL GmbH, Schenefeld, Germany.
    Monteiro, Diana C. F.
    Univ Hamburg, Hamburg, Germany.
    Morgan, Andrew
    DESY, Hamburg, Germany.
    Muhlig, Kerstin
    Uppsala Univ, Uppsala.
    Munke, Anna
    Uppsala Univ, Uppsala.
    Muennich, Astrid
    European XFEL GmbH, Schenefeld, Germany.
    Nette, Julia
    Univ Hamburg, Hamburg, Germany.
    Nugent, Keith A.
    La Trobe Univ, Bundoora, Vic 3086, Australia.
    Nuguid, Theresa
    Univ Hamburg, Hamburg, Germany.
    Orville, Allen M.
    Diamond Light Source, Didcot, Oxon, England; Univ Oxford, Didcot, Oxon, England.
    Pandey, Suraj
    Univ Wisconsin, Milwaukee, WI, USA.
    Pena, Gisel
    DESY, Hamburg, Germany.
    Villanueva-Perez, Pablo
    DESY, Hamburg, Germany.
    Poehlsen, Jennifer
    DESY, Hamburg, Germany.
    Previtali, Gianpietro
    European XFEL GmbH, Schenefeld, Germany.
    Redecke, Lars
    Univ Med Ctr Hamburg Eppendorf UKE, Hamburg, Germany.;Univ Lubeck, Lubeck, Germany.
    Riekehr, Winnie Maria
    Univ Lubeck, Lubeck, Germany.
    Rohde, Holger
    Univ Med Ctr Hamburg Eppendorf UKE, Hamburg, Germany.
    Round, Adam
    European XFEL GmbH, Schenefeld, Germany.
    Safenreiter, Tatiana
    DESY, Hamburg, Germany.
    Sarrou, Iosifina
    DESY, Hamburg, Germany.
    Sato, Tokushi
    DESY, Hamburg, Germany; European XFEL GmbH, Schenefeld, Germany.
    Schmidt, Marius
    Univ Wisconsin, Milwaukee, WI, USA.
    Schmitt, Bernd
    Paul Scherrer Inst, Villigen, Switzerland.
    Schoenherr, Robert
    Univ Lubeck, Lubeck, Germany.
    Schulz, Joachim
    European XFEL GmbH, Schenefeld, Germany.
    Sellberg, Jonas A.
    KTH Royal Inst Technol, Stockholm, Sweden.
    Seibert, M. Marvin
    Uppsala Univ, Uppsala.
    Seuring, Carolin
    SAS, Bratislava, Slovakia.
    Shelby, Megan L.
    Lawrence Livermore Natl Lab, Livermore, CA, USA.
    Shoeman, Robert L.
    Max Planck Inst Med Res, Heidelberg, Germany.
    Sikorski, Marcin
    European XFEL GmbH, Schenefeld, Germany.
    Silenzi, Alessandro
    European XFEL GmbH, Schenefeld, Germany.
    Stan, Claudiu A.
    Rutgers Univ Newark,Newark, NJ, USA.
    Shi, Xintian
    Paul Scherrer Inst, Villigen, Switzerland.
    Stern, Stephan
    DESY, Hamburg, Germany; European XFEL GmbH, Schenefeld, Germany.
    Sztuk-Dambietz, Jola
    European XFEL GmbH, Schenefeld, Germany.
    Szuba, Janusz
    European XFEL GmbH, Schenefeld, Germany.
    Tolstikova, Aleksandra
    DESY, Hamburg, Germany.
    Trebbin, Martin
    Univ Hamburg, Hamburg, Germany; Univ Buffalo, Buffalo, NY, USA; Univ Hamburg, Hamburg, Germany.
    Trunk, Ulrich
    DESY, Hamburg, Germany.
    Vagovic, Patrik
    DESY, Hamburg, Germany; European XFEL GmbH, Schenefeld, Germany.
    Ve, Thomas
    Griffith Univ, Southport, Qld, Australia.
    Weinhausen, Britta
    European XFEL GmbH, Schenefeld, Germany.
    White, Thomas A.
    DESY, Hamburg, Germany.
    Wrona, Krzysztof
    European XFEL GmbH, Schenefeld, Germany.
    Xu, Chen
    European XFEL GmbH,Schenefeld, Germany.
    Yefanov, Oleksandr
    DESY, Hamburg, Germany.
    Zatsepin, Nadia
    Arizona State Univ, Tempe, AZ, USA.
    Zhang, Jiaguo
    Paul Scherrer Inst, Villigen, Switzerland.
    Perbandt, Markus
    Univ Hamburg, Hamburg, Germany; Univ Hamburg, Hamburg, Germany; Univ Med Ctr Hamburg Eppendorf UKE, Hamburg, Germany.
    Mancuso, Adrian P.
    European XFEL GmbH, Schenefeld, Germany.
    Betzel, Christian
    Univ Hamburg, Hamburg, Germany; Integrated Biol Infrastruct Life Sci Facil Europe, Schenefeld, Germany.
    Chapman, Henry
    DESY, Hamburg, Germany; Univ Hamburg, Hamburg, Germany.
    Barty, Anton
    DESY, Hamburg, Germany.
    Megahertz serial crystallography2018In: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 9, article id 4025Article in journal (Refereed)
    Abstract [en]

    The new European X-ray Free-Electron Laser is the first X-ray free-electron laser capable of delivering X-ray pulses with a megahertz inter-pulse spacing, more than four orders of magnitude higher than previously possible. However, to date, it has been unclear whether it would indeed be possible to measure high-quality diffraction data at megahertz pulse repetition rates. Here, we show that high-quality structures can indeed be obtained using currently available operating conditions at the European XFEL. We present two complete data sets, one from the well-known model system lysozyme and the other from a so far unknown complex of a beta-lactamase from K. pneumoniae involved in antibiotic resistance. This result opens up megahertz serial femtosecond crystallography (SFX) as a tool for reliable structure determination, substrate screening and the efficient measurement of the evolution and dynamics of molecular structures using megahertz repetition rate pulses available at this new class of X-ray laser source.

  • 41.
    Wunderer, C. B.
    et al.
    DESY, Notkestrasse 85, Hamburg, Germany .
    Allahgholi, A.
    DESY, Notkestrasse 85, Hamburg, Germany .
    Bayer, M.
    DESY, Notkestrasse 85, Hamburg, Germany .
    Bianco, L.
    DESY, Notkestrasse 85, Hamburg, Germany .
    Correa, J.
    DESY, Notkestrasse 85, Hamburg, Germany .
    Delfs, A.
    DESY, Notkestrasse 85, Hamburg, Germany .
    Gottlicher, P.
    DESY, Notkestrasse 85, Hamburg, Germany .
    Hirsemann, H.
    DESY, Notkestrasse 85, Hamburg, Germany .
    Jack, S.
    DESY, Notkestrasse 85, Hamburg, Germany .
    Klyuev, A.
    DESY, Notkestrasse 85, Hamburg, Germany .
    Lange, S.
    DESY, Notkestrasse 85, Hamburg, Germany .
    Marras, A.
    DESY, Notkestrasse 85, Hamburg, Germany .
    Niemann, M.
    DESY, Notkestrasse 85, Hamburg, Germany .
    Pithan, F.
    DESY, Notkestrasse 85, Hamburg, Germany .
    Reza, Salim
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. DESY, Notkestrasse 85, Hamburg, Germany .
    Sheviakov, I.
    DESY, Notkestrasse 85, Hamburg, Germany .
    Smoljanin, S.
    DESY, Notkestrasse 85, Hamburg, Germany .
    Tennert, M.
    DESY, Notkestrasse 85, Hamburg, Germany .
    Trunk, U.
    DESY, Notkestrasse 85, Hamburg, Germany .
    Xia, Q.
    DESY, Notkestrasse 85, Hamburg, Germany .
    Zhang, J.
    DESY, Notkestrasse 85, Hamburg, Germany .
    Zimmer, M.
    DESY, Notkestrasse 85, Hamburg, Germany .
    Das, D.
    STFC, Harwell, Oxford, Didcot, United Kingdom.
    Guerrini, N.
    STFC, Harwell, Oxford, Didcot, United Kingdom.
    Marsh, B.
    STFC, Harwell, Oxford, Didcot, United Kingdom.
    Sedgwick, I.
    STFC, Harwell, Oxford, Didcot, United Kingdom.
    Turchetta, R.
    STFC, Harwell, Oxford, Didcot, United Kingdom.
    Cautero, G.
    Elettra Sincrotrone Trieste, Basovizza, Italy.
    Giuressi, D.
    Elettra Sincrotrone Trieste, Basovizza, Italy.
    Menk, R.
    Elettra Sincrotrone Trieste, Basovizza, Italy.
    Khromova, A.
    Elettra Sincrotrone Trieste, Basovizza, Italy.
    Pinaroli, G.
    Elettra Sincrotrone Trieste, Basovizza, Italy.
    Stebel, L.
    Elettra Sincrotrone Trieste, Basovizza, Italy.
    Marchal, J.
    Diamond, Harwell Campus, Didcot, United Kingdom.
    Pedersen, U.
    Diamond, Harwell Campus, Didcot, United Kingdom.
    Rees, N.
    Diamond, Harwell Campus, Didcot, United Kingdom.
    Steadman, P.
    Diamond, Harwell Campus, Didcot, United Kingdom.
    Sussmuth, M.
    Diamond, Harwell Campus, Didcot, United Kingdom.
    Tartoni, N.
    Diamond, Harwell Campus, Didcot, United Kingdom.
    Yousef, H.
    Diamond, Harwell Campus, Didcot, United Kingdom.
    Hyun, H.
    Pohang Accelerator Laboratory, Pohang, Gyeongbuk, South Korea.
    Kim, K.
    Pohang Accelerator Laboratory, Pohang, Gyeongbuk, South Korea.
    Rah, S.
    Pohang Accelerator Laboratory, Pohang, Gyeongbuk, South Korea.
    Dinapoli, R.
    PSI, Villingen, Switzerland.
    Greiffenberg, D.
    PSI, Villingen, Switzerland.
    Mezza, D.
    PSI, Villingen, Switzerland.
    Mozzanica, A.
    PSI, Villingen, Switzerland.
    Schmitt, B.
    PSI, Villingen, Switzerland.
    Shi, X.
    PSI, Villingen, Switzerland.
    Krueger, H.
    University of Bonn, Regina-Pacis-Weg 3, Bonn, Germany .
    Klanner, R.
    University of Hamburg, Luruper Chaussee 149, Hamburg, Germany .
    Schwandt, J.
    University of Hamburg, Luruper Chaussee 149, Hamburg, Germany .
    Graafsma, Heinz
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. DESY, Notkestrasse 85, Hamburg, Germany .
    Detector developments at DESY2016In: Journal of Synchrotron Radiation, ISSN 0909-0495, E-ISSN 1600-5775, Vol. 23, p. 111-117Article in journal (Refereed)
    Abstract [en]

    With the increased brilliance of state-of-the-art synchrotron radiation sources and the advent of free-electron lasers (FELs) enabling revolutionary science with EUV to X-ray photons comes an urgent need for suitable photon imaging detectors. Requirements include high frame rates, very large dynamic range, single-photon sensitivity with low probability of false positives and (multi)-megapixels. At DESY, one ongoing development project-in collaboration with RAL/STFC, Elettra Sincrotrone Trieste, Diamond, and Pohang Accelerator Laboratory-is the CMOS-based soft X-ray imager PERCIVAL. PERCIVAL is a monolithic active-pixel sensor back-thinned to access its primary energy range of 250 eV to 1 keV with target efficiencies above 90%. According to preliminary specifications, the roughly 10 cm × 10 cm, 3.5k × 3.7k monolithic sensor will operate at frame rates up to 120 Hz (commensurate with most FELs) and use multiple gains within 27 μm pixels to measure 1 to ∼ 100000 (500 eV) simultaneously arriving photons. DESY is also leading the development of the AGIPD, a high-speed detector based on hybrid pixel technology intended for use at the European XFEL. This system is being developed in collaboration with PSI, University of Hamburg, and University of Bonn. The AGIPD allows singlepulse imaging at 4.5 MHz frame rate into a 352-frame buffer, with a dynamic range allowing single-photon detection and detection of more than 10000 photons at 12.4 keV in the same image. Modules of 65k pixels each are configured to make up (multi)megapixel cameras. This review describes the AGIPD and the PERCIVAL concepts and systems, including some recent results and a summary of their current status. It also gives a short overview over other FEL-relevant developments where the Photon Science Detector Group at DESY is involved. © 2016 International Union of Crystallography.

  • 42.
    Wunderer, C. B.
    et al.
    DESY, Hamburg, Germany; CFEL, Hamburg, Germany.
    Correa, J.
    DESY, Hamburg, Germany; CFEL, Hamburg, Germany.
    Marras, A.
    DESY, Hamburg, Germany; CFEL, Hamburg, Germany.
    Aplin, S.
    DESY, Hamburg, Germany; CFEL, Hamburg, Germany.
    Boitrelle, B.
    DESY, Hamburg, Germany; CFEL, Hamburg, Germany; Synchrotron SOLEIL, Gif Sur Yvette, France.
    Goettlicher, P.
    DESY, Hamburg, Germany.
    Krivan, F.
    DESY, Hamburg, Germany.
    Kuhn, M.
    DESY, Hamburg, Germany; CFEL, Hamburg, Germany.
    Lange, S.
    DESY, Hamburg, Germany; CFEL, Hamburg, Germany.
    Niemann, M.
    DESY, Hamburg, Germany; CFEL, Hamburg, Germany.
    Okrent, F.
    DESY, Hamburg, Germany; CFEL, Hamburg, Germany.
    Shevyakov, I.
    DESY, Hamburg, Germany.
    Zimmer, M.
    DESY, Hamburg, Germany.
    Guerrini, N.
    RAL, STFC, CMOS Sensor Design, Didcot, Oxon, England.
    Marsh, B.
    RAL, STFC, CMOS Sensor Design, Didcot, Oxon, England.
    Sedgwick, I.
    RAL, STFC, CMOS Sensor Design, Didcot, Oxon, England.
    Cautero, G.
    Elettra Sinchrotrone Trieste, Basovizza, Italy.
    Giuressi, D.
    Elettra Sinchrotrone Trieste, Basovizza, Italy.
    Gregori, I.
    Elettra Sinchrotrone Trieste, Basovizza, Italy.
    Pinaroli, G.
    Elettra Sinchrotrone Trieste, Basovizza, Italy; Univ Udine, Udine, Italy.
    Menk, R.
    Elettra Sinchrotrone Trieste, Basovizza, Italy.
    Stebel, L.
    Elettra Sinchrotrone Trieste, Basovizza, Italy.
    Greer, A.
    Diamond Light Source, Didcot, Oxon, England.
    Nicholls, T.
    RAL, STFC, CMOS Sensor Design, Didcot, Oxon, England.
    Pedersen, U. K.
    Diamond Light Source, Didcot, Oxon, England.
    Tartoni, N.
    Diamond Light Source, Didcot, Oxon, England.
    Hyun, H.
    Pohang Accelerator Lab, Pohang, Gyeongbuk, South Korea.
    Kim, K.
    Pohang Accelerator Lab, Pohang, Gyeongbuk, South Korea.
    Rah, S.
    Pohang Accelerator Lab, Pohang, Gyeongbuk, South Korea.
    Graafsma, Heinz
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. DESY, Hamburg, Germany; CFEL, Hamburg, Germany.
    The Percival 2-Megapixel monolithic active pixel imager2019In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 14, no 1, article id C01006Article in journal (Refereed)
    Abstract [en]

    The peak brilliance reached by today's Free-Electron Laser and Synchrotron light sources requires photon detectors matching their output intensity and other characteristics in order to fully realize the sources' potential. The Pixellated Energy Resolving CMOS Imager, Versatile And Large (Percival) is a dedicated soft X-ray imager (0.25-1 keV) developed for this purpose by a collaboration of DESY, Rutherford Appleton Laboratory/STFC, Elettra Sincrotrone Trieste, Diamond Light Source, and Pohang Accelerator Laboratory. Following several generations of prototypes, the Percival "P2M" 2-Megapixel imager - a 4.5x5 cm monolithic, stitched sensor with an uninterrupted imaging area of 4x4 cm(2) (1408x1484 pixels of 27x27 mu m - was produced and has demonstrated basic functionality with a first-light image using visible light. It is currently being brought to full operation in a front-illuminated configuration. The readout system being commissioned in parallel has been developed specifically for this imager which will produce - at full 300 Hz frame rate - data at 20 Gbit/s. A first wafer with eight Percival P2M chips has undergone backthinning to enable soft X-ray detection. It has been diced and chips are currently being wirebonded. We summarize here the P2M system, the project status, and show the P2M sensor's first response to visible light.

  • 43.
    Wunderer, C. B.
    et al.
    DESY Deutsch Elektronensynchrotron, D-22607 Hamburg, Germany.
    Marras, A.
    DESY Deutsch Elektronensynchrotron, D-22607 Hamburg, Germany.
    Bayer, M.
    DESY Deutsch Elektronensynchrotron, D-22607 Hamburg, Germany.
    Correa, J.
    DESY Deutsch Elektronensynchrotron, D-22607 Hamburg, Germany.
    Göttlicher, P.
    DESY Deutsch Elektronensynchrotron, D-22607 Hamburg, Germany.
    Lange, S.
    DESY Deutsch Elektronensynchrotron, D-22607 Hamburg, Germany.
    Shevyakov, I.
    DESY Deutsch Elektronensynchrotron, D-22607 Hamburg, Germany.
    Smoljanin, S.
    DESY Deutsch Elektronensynchrotron, D-22607 Hamburg, Germany.
    Tennert, M.
    DESY Deutsch Elektronensynchrotron, D-22607 Hamburg, Germany.
    Viti, M.
    DESY Deutsch Elektronensynchrotron, D-22607 Hamburg, Germany.
    Xia, Q.
    DESY Deutsch Elektronensynchrotron, D-22607 Hamburg, Germany.
    Zimmer, M.
    DESY Deutsch Elektronensynchrotron, D-22607 Hamburg, Germany.
    Das, D.
    Rutherford Appleton Lab STFC, Didcot OX11 0QX, Oxon, England.
    Guerrini, N.
    Rutherford Appleton Lab STFC, Didcot OX11 0QX, Oxon, England.
    Marsh, B.
    Rutherford Appleton Lab STFC, Didcot OX11 0QX, Oxon, England.
    Sedgwick, I.
    Rutherford Appleton Lab STFC, Didcot OX11 0QX, Oxon, England.
    Turchetta, R.
    Rutherford Appleton Lab STFC, Didcot OX11 0QX, Oxon, England.
    Cautero, G.
    Elettra Sincrotrone Trieste, I-34149 Trieste, Italy.
    Gianoncelli, A.
    Elettra Sincrotrone Trieste, I-34149 Trieste, Italy.
    Giuressi, D.
    Elettra Sincrotrone Trieste, I-34149 Trieste, Italy.
    Menk, R.
    Elettra Sincrotrone Trieste, I-34149 Trieste, Italy.
    Stebel, L.
    Elettra Sincrotrone Trieste, I-34149 Trieste, Italy.
    Yousef, H.
    Elettra Sincrotrone Trieste, I-34149 Trieste, Italy.
    Marchal, J.
    Diamond Light Source, Didcot OX11 ODE, Oxon, England.
    Rees, N.
    Diamond Light Source, Didcot OX11 ODE, Oxon, England.
    Tartoni, N.
    Diamond Light Source, Didcot OX11 ODE, Oxon, England.
    Graafsma, Heinz
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. DESY Deutsch Elektronensynchrotron, D-22607 Hamburg, Germany.
    The PERCIVAL soft X-ray imager2015In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 10, no 2, article id C02008Article in journal (Refereed)
    Abstract [en]

    With the increased brilliance of state-of-the-art Synchrotron radiation sources and the advent of Free Electron Lasers enabling revolutionary science on atomic length and time scales with EUV to X-ray photons comes an urgent need for suitable photon imaging detectors. Requirements include high frame rates, very large dynamic range, single-photon counting capability with low probability of false positives, and (multi)-megapixels. PERCIVAL ("Pixelated Energy Resolving CMOS Imager, Versatile And Large") is currently being developed by a collaboration of DESY, RAL, Elettra, DLS and Pohang to address this need for the soft X-ray regime. PERCIVAL is a monolithic active pixel sensor (MAPS), i.e. based on CMOS technology. It will be back-thinned to access its primary energy range of 250 eV to 1 keV with target efficiencies above 90%. According to its preliminary specifications, the roughly 10 × 10 cm2, 3.5k × 3.7k monolithic "PERCIVAL13M" sensor will operate at frame rates up to 120 Hz (commensurate with most FELs) and use multiple gains within its 27 μm pixels to measure 1 to ∼ 105 (500 eV) simultaneously-arriving photons. A smaller "PERCIVAL2M" with ∼ 1.4k × 1.5k pixels is also planned. Currently, small-scale back-illuminated prototype systems (160 × 210 pixels of 25 μm pitch) are undergoing detailed testing with X-rays and optical photons. In March 2014, a prototype sensor was tested at 350 eV-2 keV at Elettra's TwinMic beamline. The data recorded include diffraction patterns at 350 eV and 400 eV, knife edge and sub-pixel pinhole illuminations, and comparisons of different pixel types. Another prototype chip will be submitted in fall 2014, first larger sensors could be in hand in late 2015.

  • 44.
    Wunderer, C. B.
    et al.
    Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany .
    Marras, A.
    Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany .
    Bayer, M.
    Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany .
    Glaser, L.
    Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany .
    Göttlicher, P.
    Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany .
    Lange, S.
    Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany .
    Pithan, F.
    Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany .
    Scholz, F.
    Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany .
    Seltmann, J.
    Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany .
    Shevyakov, I.
    Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany .
    Smoljanin, S.
    Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany .
    Viefhaus, J.
    Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany .
    Viti, M.
    Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany .
    Xia, Q.
    Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany .
    Zimmer, M.
    Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany .
    Klumpp, S.
    Universität Hamburg, 22607 Hamburg, Germany .
    Gasiorek, P.
    Science and Technology Facilities Council (STFC), OX11 0QX Didcot, United Kingdom .
    Guerrini, N.
    Science and Technology Facilities Council (STFC), OX11 0QX Didcot, United Kingdom .
    Marsh, B.
    Science and Technology Facilities Council (STFC), OX11 0QX Didcot, United Kingdom .
    Sedgwick, I.
    Science and Technology Facilities Council (STFC), OX11 0QX Didcot, United Kingdom .
    Turchetta, R.
    Science and Technology Facilities Council (STFC), OX11 0QX Didcot, United Kingdom .
    Cautero, G.
    Elettra Sinchrotrone Trieste S.C.p.A., S.S.14 in AREA Science Park, 34149 Trieste, Italy.
    Farina, S.
    Elettra Sinchrotrone Trieste S.C.p.A., S.S.14 in AREA Science Park, 34149 Trieste, Italy.
    Giuressi, D.
    Elettra Sinchrotrone Trieste S.C.p.A., S.S.14 in AREA Science Park, 34149 Trieste, Italy.
    Menk, R.
    Elettra Sinchrotrone Trieste S.C.p.A., S.S.14 in AREA Science Park, 34149 Trieste, Italy.
    Stebel, L.
    Elettra Sinchrotrone Trieste S.C.p.A., S.S.14 in AREA Science Park, 34149 Trieste, Italy.
    Yousef, H.
    Elettra Sinchrotrone Trieste S.C.p.A., S.S.14 in AREA Science Park, 34149 Trieste, Italy.
    Marchal, J.
    Diamond Light Source, OX11 0DE Didcot, United Kingdom.
    Nicholls, T.
    Science and Technology Facilities Council (STFC), OX11 0QX Didcot, United Kingdom .
    Tartoni, N.
    Diamond Light Source, OX11 0DE Didcot, United Kingdom.
    Graafsma, Heinz
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany .
    The PERCIVAL soft X-ray imager2014In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 9, no 3, article id C03056Article in journal (Refereed)
    Abstract [en]

    With the increased brilliance of state-of-the-art Synchrotron radiation sources and the advent of Free Electron Lasers enabling revolutionary science with EUV to X-ray photons comes an urgent need for suitable photon imaging detectors. Requirements include high frame rates, very large dynamic range, single-photon counting capability with low probability of false positives, and (multi)-megapixels. PERCIVAL (''Pixelated Energy Resolving CMOS Imager, Versatile and Large'') is currently being developed by a collaboration of DESY, RAL, Elettra and DLS to address this need for the soft X-ray regime. PERCIVAL is a monolithic active pixel sensor (MAPS), i.e. based on CMOS technology. It will be back-thinned to access its primary energy range of 250 eV to 1 keV with target efficiencies above 90%. According to its preliminary specifications, the roughly 10 × 10 cm2, 3520 × 3710 pixel monolithic sensor will operate at frame rates up to 120 Hz (commensurate with most FELs) and use multiple gains within its 27 μm pixels to measure (e.g. at 500 eV) 1 to ∼ 105 simultaneously-arriving photons. Currently, small-scale front-illuminated prototype systems (160 × 210 pixels) are undergoing detailed testing with visible-light as well as X-ray photons. © 2014 IOP Publishing Ltd and Sissa Medialab srl.

  • 45.
    Ziegler, A.
    et al.
    Microscopy and Microanalysis Unit, The University of the Witwatersrand, 1 Jan Smuts Ave., Johannesburg, 2000, South Africa .
    Graafsma, Heinz
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Detectors for Electron and X-ray Scattering and Imaging Experiments2014In: In-situ materials characterization: across spatial and temporal scales / [ed] Ziegler, A; Graafsma, H; Zhang, XF; Frenken, J, Berlin Heidelberg: Springer, 2014, no 1, p. 207-250Chapter in book (Refereed)
    Abstract [en]

    Suitable detectors for these expensive and highly complex experimental instruments described in the previous chapters are a key factor to consider, primarily because if one cannot visualize or record the experimental results with an appropriate detector, any experiment will fail. The general challenge for all position-, energy-, and time-resolving detector systems is the fulfillment of stringent requirements for direct X-ray and electron detection experiments. These include a priori a high detection sensitivity and efficiency, but most important is coping with extremely high flux (1012 highly energetic X-ray photons or 108 300 kV electrons per second), exhibiting appropriate radiation hardness to maintain proper detection sensitivity and operability, low electronic noise for finest energy resolution in single-photon counting mode, and high frame rates for high time resolution. Parameters such as the Modulation Transfer Function (MTF), the Detector Quantum Efficiency (DQE), the dynamic range, pixel size, sensitivity, linearity, uniformity, background noise, read out speed, and reliability (or life time) among other characteristics will need to be considered to decide which detector design is best for what application. There are a variety of designs in the development and/or prototype stage. Costs are high, because most are produced using expensive wafer fabrication processes. A point of consideration is flexibility, adaptability, and how swift detector parameters can be changed. The trend at high-end, multi-national, multi-user scientific research facilities (Synchrotrons, FELS) however, is to operate dedicated, non-transferable detectors for specialized applications, whereas the medium to small scale research facilities may well decide for a more versatile, multi-purpose detector. The following sections will address detectors for electrons and detectors for X-ray photons separately. Development efforts for these detector types overlap, in part due to the high costs involved, and in part due to the compatibility of some developmental stages and components for both detector types. © Springer-Verlag Berlin Heidelberg 2014.

1 - 45 of 45
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf