miun.sePublications
Change search
Refine search result
123 1 - 50 of 137
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Abdalla, Suliman
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Oelmann, Bengt
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Thim [Lundgren], Jan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Architecture and Circuit Design for Color X-Ray Pixal Array Detector Read-Out Electronics2007In: 24th Norchip Conference, 2006, New York: IEEE conference proceedings, 2007, p. 271-276, article id 4126997Conference paper (Refereed)
    Abstract [en]

    This paper proposes an area- and power-efficient implementation of the read-out electronics for color X-ray pixel detectors for imaging. Introducing multiple levels of energy discrimination will increase the complexity of the read-out electronics in each pixel. The proposed architecture has full resolution for the intensity and reduced resolution for the energy spectrum (color), which leads to a good compromise of image quality and circuit complexity. We show that the increase in complexity, compared to single energy-range pixel, will lead to increase in circuit area of less than 20%.

  • 2.
    Ahmad, Naeem
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Imran, Muhammad
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Khursheed, Khursheed
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Lawal, Najeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Model, placement optimization and verification of a sky surveillance visual sensor network2013In: International Journal of Space-Based and Situated Computing (IJSSC), ISSN 2044-4893, E-ISSN 2044-4907, Vol. 3, no 3, p. 125-135Article in journal (Refereed)
    Abstract [en]

    A visual sensor network (VSN) is a distributed system of a large number of camera nodes, which generates two dimensional data. This paper presents a model of a VSN to track large birds, such as golden eagle, in the sky. The model optimises the placement of camera nodes in VSN. A camera node is modelled as a function of lens focal length and camera sensor. The VSN provides full coverage between two altitude limits. The model can be used to minimise the number of sensor nodes for any given camera sensor, by exploring the focal lengths that fulfils both the full coverage and minimum object size requirement. For the case of large bird surveillance, 100% coverage is achieved for relevant altitudes using 20 camera nodes per km² for the investigated camera sensors. A real VSN is designed and measurements of VSN parameters are performed. The results obtained verify the VSN model.

  • 3.
    Ahmad, Naeem
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Imran, Muhammad
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Khursheed, Khursheed
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Lawal, Najeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Solution space exploration of volumetric surveillance using a general taxonomy2013In: Proceedings of SPIE - The International Society for Optical Engineering / [ed] Daniel J. Henry, 2013, p. Art. no. 871317-Conference paper (Refereed)
    Abstract [en]

    Visual surveillance systems provide real time monitoring of the events or the environment. The availability of low cost sensors and processors has increased the number of possible applications of these kinds of systems. However, designing an optimized visual surveillance system for a given application is a challenging task, which often becomes a unique design task for each system. Moreover, the choice of components for a given surveillance application out of a wide spectrum of available alternatives is not an easy job. In this paper, we propose to use a general surveillance taxonomy as a base to structure the analysis and development of surveillance systems. We demonstrate the proposed taxonomy for designing a volumetric surveillance system for monitoring the movement of eagles in wind parks aiming to avoid their collision with wind mills. The analysis of the problem is performed based on taxonomy and behavioral and implementation models are identified to formulate the solution space for the problem. Moreover, we show that there is a need for generalized volumetric optimization methods for camera deployment.

  • 4.
    Ahmad, Naeem
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Khursheed, Khursheed
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Imran, Muhammad
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Lawal, Najeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Cost Optimization of a Sky Surveillance Visual Sensor Network2012In: Proceedings of SPIE - The International Society for Optical Engineering, Belgium: SPIE - International Society for Optical Engineering, 2012, p. Art. no. 84370U-Conference paper (Refereed)
    Abstract [en]

    A Visual Sensor Network (VSN) is a network of spatially distributed cameras. The primary difference between VSN and other type of sensor network is the nature and volume of information. A VSN generally consists of cameras, communication, storage and central computer, where image data from multiple cameras is processed and fused. In this paper, we use optimization techniques to reduce the cost as derived by a model of a VSN to track large birds, such as Golden Eagle, in the sky. The core idea is to divide a given monitoring range of altitudes into a number of sub-ranges of altitudes. The sub-ranges of altitudes are monitored by individual VSNs, VSN1 monitors lower range, VSN2 monitors next higher and so on, such that a minimum cost is used to monitor a given area. The VSNs may use similar or different types of cameras but different optical components, thus, forming a heterogeneous network.  We have calculated the cost required to cover a given area by considering an altitudes range as single element and also by dividing it into sub-ranges. To cover a given area with given altitudes range, with a single VSN requires 694 camera nodes in comparison to dividing this range into sub-ranges of altitudes, which requires only 96 nodes, which is 86% reduction in the cost.

  • 5.
    Ahmad, Naeem
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Khursheed, Khursheed
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Imran, Muhammad
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Lawal, Najeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Modeling and Verification of a Heterogeneous Sky Surveillance Visual Sensor Network2013In: International Journal of Distributed Sensor Networks, ISSN 1550-1329, E-ISSN 1550-1477, p. Art. id. 490489-Article in journal (Refereed)
    Abstract [en]

    A visual sensor network (VSN) is a distributed system of a large number of camera nodes and has useful applications in many areas. The primary difference between a VSN and an ordinary scalar sensor network is the nature and volume of the information. In contrast to scalar sensor networks, a VSN generates two-dimensional data in the form of images. In this paper, we design a heterogeneous VSN to reduce the implementation cost required for the surveillance of a given area between two altitude limits. The VSN is designed by combining three sub-VSNs, which results in a heterogeneous VSN. Measurements are performed to verify full coverage and minimum achieved object image resolution at the lower and higher altitudes, respectively, for each sub-VSN. Verification of the sub-VSNs also verifies the full coverage of the heterogeneous VSN, between the given altitudes limits. Results show that the heterogeneous VSN is very effective to decrease the implementation cost required for the coverage of a given area. More than 70% decrease in cost is achieved by using a heterogeneous VSN to cover a given area, in comparison to homogeneous VSN. © 2013 Naeem Ahmad et al.

  • 6.
    Ahmad, Naeem
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Lawal, Najeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Oelmann, Bengt
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Imran, Muhammad
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Khursheed, Khursheed
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Model and placement optimization of a sky surveillance visual sensor network2011In: Proceedings - 2011 International Conference on Broadband and Wireless Computing, Communication and Applications, BWCCA 2011, IEEE Computer Society, 2011, p. 357-362Conference paper (Refereed)
    Abstract [en]

    Visual Sensor Networks (VSNs) are networks which generate two dimensional data. The major difference between VSN and ordinary sensor network is the large amount of data. In VSN, a large number of camera nodes form a distributed system which can be deployed in many potential applications. In this paper we present a model of the physical parameters of a visual sensor network to track large birds, such as Golden Eagle, in the sky. The developed model is used to optimize the placement of the camera nodes in the VSN. A camera node is modeled as a function of its field of view, which is derived by the combination of the lens focal length and camera sensor. From the field of view and resolution of the sensor, a model for full coverage between two altitude limits has been developed. We show that the model can be used to minimize the number of sensor nodes for any given camera sensor, by exploring the focal lengths that both give full coverage and meet the minimum object size requirement. For the case of large bird surveillance we achieve 100% coverage for relevant altitudes using 20 camera nodes per km2 for the investigated camera sensors.

  • 7.
    Ahmad, Naeem
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Lawal, Najeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    A taxonomy of visual surveillance systems2013Report (Other academic)
    Abstract [en]

    The increased security risk in society and the availability of low cost sensors and processors has expedited the research in surveillance systems. Visual surveillance systems provide real time monitoring of the environment. Designing an optimized surveillance system for a given application is a challenging task. Moreover, the choice of components for a given surveillance application out of a wide spectrum of available products is not an easy job.

     

    In this report, we formulate a taxonomy to ease the design and classification of surveillance systems by combining their main features. The taxonomy is based on three main models: behavioral model, implementation model, and actuation model. The behavioral model helps to understand the behavior of a surveillance problem. The model is a set of functions such as detection, positioning, identification, tracking, and content handling. The behavioral model can be used to pinpoint the functions which are necessary for a particular situation. The implementation model structures the decisions which are necessary to implement the surveillance functions, recognized by the behavioral model. It is a set of constructs such as sensor type, node connectivity and node fixture. The actuation model is responsible for taking precautionary measures when a surveillance system detects some abnormal situation.

     

    A number of surveillance systems are investigated and analyzed on the basis of developed taxonomy. The taxonomy is general enough to handle a vast range of surveillance systems. It has organized the core features of surveillance systems at one place. It may be considered an important tool when designing surveillance systems. The designers can use this tool to design surveillance systems with reduced effort, cost, and time.

  • 8.
    Alam, Anzar
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Manuilskiy, Anatoliy
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Thim, Jan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Lindgren, Johan
    Iggesund Paperboard AB, Iggesund, Sweden.
    Lidén, Joar
    SCA Ortviken AB, Sundsvall, Sweden.
    Online surface roughness characterization of paper and paperboard using a line of light triangulation technique2012In: Nordic Pulp & Paper Research Journal, ISSN 0283-2631, E-ISSN 2000-0669, Vol. 27, no 3, p. 662-670Article in journal (Refereed)
    Abstract [en]

    Within both the paper and paperboard industries, real time monitoring and measurement of surface roughness of a paper moving at high velocities is an important and challenging area of research. The uniform surface, for an entire production, can be effectively achieved by monitoring and controlling the paper surface roughness, in real time during the manufacturing steps. Presently the majority of paper industries rely on traditional laboratory profilometers. The obvious limitations of lab profilometers are that these are slow, do not measure the quality of entire reels but rather deal with only a few small pieces of samples taken from the end of the reels and it is difficult to make any possible correction in the productionlines without knowing the online roughness data. To eradicate the disadvantages associated with conventional measurements, an online prototype instrument has been developed that measures the surface roughness during the manufacturing steps, and is based on a line of lighttriangulation technique. The prototype technique will be of assistance in ensuring tight process control in order to maintain both a better and auniform quality throughout the entire production. It measures the whole reel, meter by meter, in traditional units of roughness and is also capable of characterizing the topography in a wide range of wavelength spectra. The article presents the online analyses results obtained from the developed prototype. The real time measurements, in a paperboard pilot mill, have successfully characterized and distinguished 16 different grades of newspaper and paperboard reels including reels which have the same family of quality grades and materials.

  • 9.
    Alam, Anzar
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Thim, Jan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Manuilskiy, Anatoliy
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Lindgren, Johan
    Iggesund Paperboard AB, Iggesund, Sweden.
    Lidén, Joar
    SCA Ortviken AB, Sundsvall, Sweden.
    Online surface characterization of paper and paperboards in a wide-range of the spatial wavelength spectrum2012In: Applied Surface Science, ISSN 0169-4332, E-ISSN 1873-5584, Vol. 258, no 20, p. 7928-7935Article in journal (Refereed)
    Abstract [en]

    In the paper industry, surface topography is the essence of both paper and paperboard, and accurate topographical measurements are equally essential in order to achieve a uniform smooth surface. The traditional laboratory methods measure only a few samples from the entire tambour and there are other obvious limitations to this approach. Online measurements may be of significant value to improve the surface quality throughout the production. Roughness is one of the topography components and the majority of techniques measure paper by means of a single predictor of average roughness, R a which is inadequate in providing a comprehensive characterization of the surface. Measurements, in a wide range ofwavelengths, can characterize topography components such as roughness, waviness, cockling, etc. Online measurements were taken for various grades of 8 paper reels, containing the wireside and topsides for newspaper, and uncoated and coated sides of paperboards. Their surfacecharacterization, in the spatial wavelength spectrum, from 0.1 to 10 mm was obtained. This article presents the online characterizationresults which have efficiently distinguished the surfaces of same family materials including the edge and the middle position reels of fine coatedpaperboard. Online measurements were taken, at Iggesund Paperboard Pilot Coater in Sweden, by using a recently developed OnlineTopography (OnTop) device which is based on the principle of light triangulation. © 2012 Elsevier B.V. All rights reserved.

  • 10.
    Alam, Mohammad Anzar
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Manuilskiy, Anatoliy
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Thim, Jan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Real time surface measurement technique in a wide range of wavelengths spectrum2014In: IEEE Sensors Journal, ISSN 1530-437X, E-ISSN 1558-1748, Vol. 14, no 1, p. 285-294Article in journal (Refereed)
    Abstract [en]

    Real time surface topography measurement in the paper and paperboard industries is a challenging research field. The existing online techniques measure only a small area of paper surface and estimate topographical irregularities in a narrow scale as a single predictor. Considering the limitations and complications in measuring the surface at high speed, a laser line triangulation technique is explored to measure surface topography in a wide scale. The developed technique is new for the paper and paperboard application that scans a line onto the paper-web surface up to 210 mm in length in the cross machine direction. The combination of a narrow laser linewidth imaging, a subpixel resolution, and the selection of a unique measurement location has made it possible to measure roughness and simultaneously characterize paper surface topography from 0.1 to 30 mm spatial wavelength. This spatial range covers wide scale surface properties such as roughness, cockling, and waviness. The technique clearly distinguishes and characterizes the surface of newspaper, and lightweight coated, coated, and uncoated paperboard in real time during the paper manufacturing process. The system temporal noise for the average roughness is estimated as 37 dB. The signal to noise ratio found is from 5.4 to 8.1 in the short spatial wavelength up to 1 mm, whereas it is more than 75 in the long spatial wavelength from 5 to 10 mm.

  • 11.
    Alam, Mohammad Anzar
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Manuilskiy, Anatoliy
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Thim, Jan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Westerlind, Christina
    Performance and Prototyping Laboratory, SCA AB, Research and Development Centre, Sundsvall 852 37, Sweden .
    Limitation of a line-of-light online paper surface measurement system2014In: IEEE Sensors Journal, ISSN 1530-437X, E-ISSN 1558-1748, Vol. 14, no 8, p. 2715-2724Article in journal (Refereed)
    Abstract [en]

    A new prototype device has been developed based on a laser triangulation principle to measure online surface topography in the paper and paperboard industries. It characterizes the surface in a wide spatial scale of topography from 0.09-10 mm. The prototype's technique projects a narrow line-of-light perpendicularly onto the moving paper-Web surface and scattered reflected light is collected at a low angle, low specular, and reduced coherent length onto the CCD sensors synchronized with the laser sources. The scattering phenomenon determines surface deviations in the z-direction. The full-width, at half-maximum of a laser line in cross section is sensitive in computation of the surface topography. The signal processing aspect of the image processing, for example, threshold and filtering algorithms are also sensitive in estimating the accurate surface features. Moreover, improper light illumination, intensity, reflection, occlusion, surface motion, and noise in the imaging sensor, and so forth, all contribute to deteriorate the measurements. Optical techniques measure the surface indirectly and, in general, an evaluation of the performance and the limitations of the technique are both essential and challenging. The paper describes the accuracy, uncertainty, and limitations of the developed technique in the raw profiles and in terms of the rms roughness. The achieved image subpixel resolution is 0.01 times a pixel. Statistically estimated uncertainty (2σ) in the laboratory environment was found 0.05 μm for a smooth sample, which provides a 95% confidence level in the rms roughness results. The depth of field of the prototype is ~2.4 mm.

  • 12.
    Alam, Mohammad Anzar
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Thim, Jan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Manuilskiy, Anatoliy
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Westerlind, Christina
    SCA R&D Centre, Sundsvall, Sweden.
    Lindgren, Johan
    Iggesund Paperboard AB, Iggesund, Sweden.
    Lidén, Joar
    SCA Ortviken AB, Sundsvall, Sweden.
    Investigation of the surface topographical differences between the Cross Direction and the Machine Direction for newspaper and paperboard2011In: Nordic Pulp & Paper Research Journal, ISSN 0283-2631, E-ISSN 2000-0669, Vol. 26, no 4, p. 468-475Article in journal (Refereed)
    Abstract [en]

    Paper and paperboard surface quality is constantly being improved by the industry. This improvement work deals with the essential fact that the surface topography must be measured, both in relation to offline and online measurements for the manufactured products. Most measurements relating to surface topography (especially online) are performed either in the machine direction (MD) or in the cross direction (CD). It has been the opinion of SCA Ortviken AB and Iggesund Paperboard AB that the surface topography amplitudes are almost always higher in the CD than in the MD, for their products which consist of newspaper and paperboard. This article aims to investigate the rela-tionship between the CD and the MD surface topography amplitudes for a wide range of spatial wavelength for both newspaper and paperboard. The tests and investiga-tions have been conducted using an FRT Microprof profilometer within the range 20 μm up to 8 mm, and the results confirm that the surface topography amplitudes are higher in the CD for most of the shorter spatial wavelength within this range. The results also show significant differences between measurements for different paper qualities, suggesting a requirement to investigate the relationship between the CD and the MD topography for all paper and paperboard qualities of interest for a paper or paperboard mill, before a decision is made in relation to a measurement method.

  • 13.
    Alqaysi, Hiba
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Lawal, Najeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Fedorov, Igor
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Evaluating Coverage Effectiveness of Multi-Camera Domes Placement for Volumetric Surveillance2017In: ICDSC 2017 Proceedings of the 11th International Conference on Distributed Smart Cameras, New York, NY, USA: Association for Computing Machinery (ACM), 2017, Vol. F132201, p. 49-54Conference paper (Refereed)
    Abstract [en]

    Multi-camera dome is composed of a number of cameras arranged to monitor a half sphere of the sky. Designing a network of multi-camera domes can be used to monitor flying activities in open large area, such as birds' activities in wind parks. In this paper, we present a method for evaluating the coverage effectiveness of the multi-camera domes placement in such areas. We used GPS trajectories of free flying birds over an area of 9 km2 to analyze coverage effectiveness of randomly placed domes. The analysis is based on three criteria namely, detection, positioning and the maximum resolution captured. The developed method can be used to evaluate results of designing and optimizing dome placement algorithms for volumetric monitoring systems in order to achieve maximum coverage.

  • 14.
    Anwar, Qaiser
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Imran, Muhammad
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Intelligence Partitioning as a Method for Architectural Exploration of Wireless Sensor Node2017In: Proceedings of the International Conference on Computational Science and Computational Intelligence (CSCI), 2016., IEEE Press, 2017, p. 935-940, article id 7881473Conference paper (Refereed)
    Abstract [en]

    Embedded systems with integrated sensing, processing and wireless communication are driving future connectivity concepts such as Wireless Sensor Networks (WSNs) and Internet of Things (IoTs). Because of resource limitations, there still exists a number of challenges such as low latency and energy consumption to realize these concepts to full potential. To address and understand these challenges, we have developed and employed an intelligence partitioning method which generates different implementation alternatives by distributing processing load across multiple nodes. The task-to-node mapping has exponential complexity which is hard to compute for a large scale system. Regarding this, our method provides recommendation to handle and minimize such complexity for a large system. Experiments on a use-case concludes that the proposed method is able to identify unfavourable architecture solutions in which forward and backword communication paths exists in task-to-node mapping. These solution can be avoided for further architectural exploration, thus limiting the space for architecture exploration of a sensor node.

  • 15.
    Aurangzeb, Khursheed
    et al.
    King Saud Univ, Riyadh, Saudi Arabia; COMSATS Inst Informat Technol, Attack, Pakistan.
    Alhussein, Musaed
    King Saud Univ, Riyadh, Saudi Arabia.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Analysis of Binary Image Coding Methods for Outdoor Applications of Wireless Vision sensor Networks2018In: IEEE Access, E-ISSN 2169-3536, Vol. 6, p. 16932-16941Article in journal (Refereed)
    Abstract [en]

    The processing of images at the vision sensor nodes (VSN) requires a high computation power and their transmission requires a large communication bandwidth. The energy budget is limited in outdoor applications of wireless vision sensor networks (WVSN). This means that both the processing of images at the VSN and the communication to server must be energy efficient. The wireless communication of uncompressed data consumes huge amounts of energy. Data compression methods are efficient in reducing data in images and can be used for the reduction in transmission energy. We have evaluated seven binary image coding techniques. Our evaluation is based on the processing complexity and energy consumption of the compression methods on the embedded platforms. The focus is to come up with a binary image coding method, which has good compression efficiency and short processing time. An image coding method with such attributes will result in reduced total energy requirement of the node. We have used both statistically generated images and real captured images, in our experiments. Based on our results, we conclude that International Telegraph and Telephone Consultative Committee Group 4, gzip_pack and JPEG-LS are suitable coding methods for the outdoor applications of WVSNs.

  • 16.
    Bader, Sebastian
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Krämer, Matthias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Lawal, Najeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Oelmann, Bengt
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Remote image capturing with low-cost and low-power wireless camera nodes2014In: Proceedings of IEEE Sensors, IEEE Sensors Council, 2014, p. 730-733, article id 6985103Conference paper (Refereed)
    Abstract [en]

    Wireless visual sensor networks provide featurerich information about their surrounding and can thus be used as a universal measurement tool for a great number of applications. Existing solutions, however, have mainly been focused on high sample rate applications, such as video surveillance, object detection and tracking. In this paper, we present a wireless camera node architecture that targets low sample rate applications (e.g., manual inspections and meter reading). The major design considerations are a long system lifetime, a small size and a low production cost.We present the overall architecture with its individual design choices, and evaluate the architecture with respect to its application constraints. With a typical image acquisition cost of 1.5 J for medium quality images and a quiescent power demand of only 7 uW, the evaluation results demonstrate that long operation periods of the order of years can be achieved in low sample rate scenarios.

  • 17.
    Cao, Cao
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Oelmann, Bengt
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    A Tool for Low-Power Synthesis of FSMs with Mixed Synchronous/Asynchronous State Memory2004In: 22ND NORCHIP CONFERENCE, PROCEEDINGS, IEEE , 2004, p. 199-202Conference paper (Refereed)
    Abstract [en]

    An efficient way to obtain Finite-State Machines (FSMs) with low power consumption is to,partition the machine into two or more sub-FSMs and use dynamic power management, where all sub-FSMs not active are shut down, to reduce dynamic power dissipation. In this paper we focus on FSM partitioning algorithms and RT-level power estimation functions that are the key issues in the design of a CAD tool for synthesis of low-power partitioned FSMS. We target an implementation architecture that is based on both synchronous and asynchronous state memory elements that enables larger power reductions than fully synchronous architectures do. Power reductions of up to 77% have been achieved at a cost of an increase in area of 18%.

  • 18.
    Cao, Cao
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Oelmann, Bengt
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Synthesis tool for low-power finite-state machines with mixed synchronous/asynchronous state memory2006In: IEE Proceedings - Computers and digital Techniques, ISSN 1350-2387, E-ISSN 1359-7027, Vol. 153, no 4, p. 243-248Article in journal (Refereed)
    Abstract [en]

    An efficient way to obtain finite-state machines (FSMs) with low-power consumption is to partition the machine into two or more sub-FSMs and then use dynamic power management where all sub-FSMs not active are shut down, with the effect of reducing dynamic power dissipation. Thus, FSM partitioning algorithms and register-transfer-level power estimation functions are the main focus of the paper as these are key issues in the design of a computer-aided design tool for synthesis of low-power partitioned FSMs. An implementation architecture is targeted, which is based on both synchronous and asynchronous state memory elements that enable larger power reductions than fully synchronous architectures do. Power reductions of up to 77 have been achieved at a cost of an 18 increase in area.

  • 19. Ericsson, A.
    et al.
    Norell, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Comparison of Noise Reduction and MPEG-2 Compression Efficiency for Pre-Processing Video Filters2004In: IWSSIP'04 : international workshop on systems, signals and image processing :   ( Poznan, 13-15 September 2004 ), Poznan, Poland: Polish Society for Theoretical and Applied Electrical Engineering , 2004Conference paper (Refereed)
    Abstract [en]

    Video information that is input in digital video recorders or distributed over the Internet comes in various different qualities. One possibility to improve the video quality and also to improve the efficiency of the video encoder is to use different types of spatial or temporal video filters. This paper presents a comparison of the noise reduction efficiency for three different video filters. Additionally, the improvement of MPEG-2 encoding efficiency is compared. The results provide an efficiency function that can be used to select an appropriate filter type for a special situation.

  • 20.
    Fedorov, Igor
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Lawal, Najeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Alqaysi, Hiba
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Placement Strategy of Multi-Camera Volumetric Surveillance System for Activities Monitoring2017In: ICDSC 2017 Proceedings of the 11th International Conference on Distributed Smart Cameras, New York, NY, USA: Association for Computing Machinery (ACM), 2017, Vol. F132201, p. 113-118Conference paper (Refereed)
    Abstract [en]

    The design of multi-camera surveillance system comes with many advantages, for example it facilitates as understanding how flying objects act in a given volume. One possible application is for the observation interaction of birds and calculate their trajectories around wind turbines to create promising systems for preventing bird collisions with turbine blades. However, there are also challenges, such as finding the optimal node placement and camera calibration. To address these challenges we investigated a trade-off between calibration accuracy and node requirements, including resolution, modulation transfer function, field of view and angle baseline. We developed a strategy for camera placement to achieve improved coverage for golden eagle monitoring and tracking. This strategy based on the modified resolution criterion taking into account the contrast function of the camera and the estimation of the base angle between the cameras.

  • 21.
    Imran, Muhammad
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Ahmad, Naeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Khursheed, Khursheed
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Malik, Abdul Waheed
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Lawal, Najeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    O’Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Implementation of Wireless Vision Sensor Node With a Lightweight Bi-Level Video Coding2013In: IEEE Journal on Emerging and Selected Topics in Circuits and Systems, ISSN 2156-3357, Vol. 3, no 2, p. 198-209, article id 6508941Article in journal (Refereed)
    Abstract [en]

    Wireless vision sensor networks (WVSNs) consist ofa number of wireless vision sensor nodes (VSNs) which have limitedresources i.e., energy, memory, processing, and wireless bandwidth.The processing and communication energy requirements ofindividual VSN have been a challenge because of limited energyavailability. To meet this challenge, we have proposed and implementeda programmable and energy efficient VSN architecturewhich has lower energy requirements and has a reduced designcomplexity. In the proposed system, vision tasks are partitionedbetween the hardware implemented VSN and a server. The initialdata dominated tasks are implemented on the VSN while thecontrol dominated complex tasks are processed on a server. Thisstrategy will reduce both the processing energy consumption andthe design complexity. The communication energy consumption isreduced by implementing a lightweight bi-level video coding on theVSN. The energy consumption is measured on real hardware fordifferent applications and proposed VSN is compared against publishedsystems. The results show that, depending on the application,the energy consumption can be reduced by a factor of approximately1.5 up to 376 as compared to VSN without the bi-level videocoding. The proposed VSN offers energy efficient, generic architecturewith smaller design complexity on hardware reconfigurableplatform and offers easy adaptation for a number of applicationsas compared to published systems.

  • 22.
    Imran, Muhammad
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Ahmad, Naeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Khursheed, Khursheed
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    O’Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Lawal, Najeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Low Complexity Background Subtraction for Wireless Vision Sensor Node2013In: Proceedings - 16th Euromicro Conference on Digital System Design, DSD 2013, 2013, p. 681-688Conference paper (Refereed)
    Abstract [en]

    Wireless vision sensor nodes consist of limited resources such as energy, memory, wireless bandwidth and processing. Thus it becomes necessary to investigate lightweight vision tasks. To highlight the foreground objects, many machine vision applications depend on the background subtraction technique. Traditional background subtraction approaches employ recursive and non-recursive techniques and store the whole image in memory. This raises issues like complexity on hardware platform, energy requirements and latency. This work presents a low complexity background subtraction technique for a hardware implemented VSN. The proposed technique utilizes existing image scaling techniques for scaling down the image. The downscaled image is stored in memory of microcontroller which is already there for transmission. For subtraction operation, the background pixels are generated in real time through up scaling. The performance, and memory requirements of the system is compared for four image scaling techniques including nearest neighbor, averaging, bilinear, and bicubic. The results show that a system with lightweight scaling techniques, i.e., nearest neighbor and averaging, up to a scaling factor of 8, missed on average less than one object as compared to a system which uses a full original background image. The proposed approach will reduce the cost, design/implementation complexity and the memory requirement by a factor of up to 64.

  • 23.
    Imran, Muhammad
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Benkrid, Khaled
    School of Engineering at the University of Edinburgh,UK.
    Khursheed, Khursheed
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Ahmad, Naeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    O’Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Lawal, Najeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Analysis and Characterization of Embedded Vision Systems for Taxonomy Formulation2013In: Proceedings of SPIE - The International Society for Optical Engineering / [ed] Nasser Kehtarnavaz, Matthias F. Carlsohn,, USA: SPIE - International Society for Optical Engineering, 2013, p. Art. no. 86560J-Conference paper (Refereed)
    Abstract [en]

    The current trend in embedded vision systems is to propose bespoke solutions for specific problems as each application has different requirement and constraints. There is no widely used model or benchmark which aims to facilitate generic solutions in embedded vision systems. Providing such model is a challenging task due to the wide number of use cases, environmental factors, and available technologies. However, common characteristics can be identified to propose an abstract model. Indeed, the majority of vision applications focus on the detection, analysis and recognition of objects. These tasks can be reduced to vision functions which can be used to characterize the vision systems. In this paper, we present the results of a thorough analysis of a large number of different types of vision systems. This analysis led us to the development of a system’s taxonomy, in which a number of vision functions as well as their combination characterize embedded vision systems. To illustrate the use of this taxonomy, we have tested it against a real vision system that detects magnetic particles in a flowing liquid to predict and avoid critical machinery failure. The proposed taxonomy is evaluated by using a quantitative parameter which shows that it covers 95 percent of the investigated vision systems and its flow is ordered for 60 percent systems. This taxonomy will serve as a tool for classification and comparison of systems and will enable the researchers to propose generic and efficient solutions for same class of systems.

  • 24.
    Imran, Muhammad
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Khursheed, Khursheed
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Ahmad, Naeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Malik, Abdul Waheed
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Lawal, Najeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Complexity Analysis of Vision Functions for implementation of Wireless Smart Cameras using System Taxonomy2012In: Proceedings of SPIE - The International Society for Optical Engineering, Belgium: SPIE - International Society for Optical Engineering, 2012, p. Art. no. 84370C-Conference paper (Refereed)
    Abstract [en]

    There are a number of challenges caused by the large amount of data and limited resources such as memory, processing capability, energy consumption and bandwidth when implementing vision systems on wireless smart cameras using embedded platforms. It is usual for research in this field to focus on the development of a specific solution for a particular problem. There is a requirement for a tool which has the ability to predict the resource requirements for the development and comparison of vision solutions in wireless smart cameras. To accelerate the development of such tool, we have used a system taxonomy, which shows that the majority of wireless smart cameras have common functions. In this paper, we have investigated the arithmetic complexity and memory requirements of vision functions by using the system taxonomy and proposed an abstract complexity model. To demonstrate the use of this model, we have analysed a number of implemented systems with this model and showed that complexity model together with system taxonomy can be used for comparison and generalization of vision solutions. Moreover, it will assist researchers/designers to predict the resource requirements for different class of vision systems in a reduced time and which will involve little effort. 

  • 25.
    Imran, Muhammad
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Khursheed, Khursheed
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Ahmad, Naeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Lawal, Najeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Waheed, Malik A.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Architecture of Wireless Visual Sensor Node with Region of Interest Coding2012In: Proceedings - 2012 IEEE 3rd International Conference on Networked Embedded Systems for Every Application, NESEA 2012, IEEE conference proceedings, 2012, p. Art. no. 6474029-Conference paper (Refereed)
    Abstract [en]

    The challenges involved in designing a wirelessVision Sensor Node include the reduction in processing andcommunication energy consumption, in order to maximize itslifetime. This work presents an architecture for a wireless VisionSensor Node, which consumes low processing andcommunication energy. The processing energy consumption isreduced by processing lightweight vision tasks on the VSN andby partitioning the vision tasks between the wireless VisionSensor Node and the server. The communication energyconsumption is reduced with Region Of Interest coding togetherwith a suitable bi-level compression scheme. A number ofdifferent processing strategies are investigated to realize awireless Vision Sensor Node with a low energy consumption. Theinvestigation shows that the wireless Vision Sensor Node, usingRegion Of Interest coding and CCITT group4 compressiontechnique, consumes 43 percent lower processing andcommunication energy as compared to the wireless Vision SensorNode implemented without Region Of Interest coding. Theproposed wireless Vision Sensor Node can achieve a lifetime of5.4 years, with a sample period of 5 minutes by using 4 AAbatteries.

  • 26.
    Imran, Muhammad
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Khursheed, Khursheed
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Ahmad, Naeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Lawal, Najeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Waheed, Malik A.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Complexity Analysis of Vision Functions for Comparison of Wireless Smart Cameras2014In: International Journal of Distributed Sensor Networks, ISSN 1550-1329, E-ISSN 1550-1477, p. Art. no. 710685-Article in journal (Refereed)
    Abstract [en]

    There are a number of challenges caused by the large amount of data and limited resources such as memory, processing capability, energy consumption, and bandwidth, when implementing vision systems on wireless smart cameras using embedded platforms. It is usual for research in this field to focus on the development of a specific solution for a particular problem. There is a requirement for a tool which facilitates the complexity estimation and comparison of wireless smart camera systems in order to develop efficient generic solutions. To develop such a tool, we have presented, in this paper, a complexity model by using a system taxonomy. In this model, we have investigated the arithmetic complexity and memory requirements of vision functions with the help of system taxonomy. To demonstrate the use of the proposed model, a number of actual systems are analyzed in a case study. The complexity model, together with system taxonomy, is used for the complexity estimation of vision functions and for a comparison of vision systems. After comparison, the systems are evaluated for implementation on a single generic architecture. The proposed approach will assist researchers in benchmarking and will assist in proposing efficient generic solutions for the same class of problems with reduced design and development costs.

  • 27.
    Imran, Muhammad
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Khursheed, Khursheed
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Lawal, Najeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Ahmad, Naeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Implementation of wireless Vision Sensor Node for Characterization of Particles in Fluids2012In: IEEE transactions on circuits and systems for video technology (Print), ISSN 1051-8215, E-ISSN 1558-2205, Vol. 22, no 11, p. 1634-1643Article in journal (Refereed)
    Abstract [en]

    Wireless Vision Sensor Networks (WVSNs) have a number of wireless Vision Sensor Nodes (VSNs), often spread over a large geographical area. Each node has an image capturing unit, a battery or alternative energy source, a memory unit, a light source, a wireless link and a processing unit. The challenges associated with WVSNs include low energy consumption, low bandwidth, limited memory and processing capabilities. In order to meet these challenges, our research is focused on the exploration of energy efficient reconfigurable architectures for VSN. In this work, the design/research challenges associated with the implementation of VSN on different computational platforms such as micro-controller, FPGA and server, are explored. In relation to this, the effect on the energy consumption and the design complexity at the node, when the functionality is moved from one platform to another are analyzed. Based on the implementation of the VSN on embedded platforms, the lifetime of the VSN is predicted using the measured energy values of the platforms for different implementation strategies. The implementation results show that an architecture, where the compressed images after pixel based operation are transmitted, realize a WVSN system with low energy consumption. Moreover, the complex post processing tasks are moved to a server, with reduced constraints. 

  • 28.
    Imran, Muhammad
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Khursheed, Khursheed
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Malik, Abdul Waheed
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Ahmad, Naeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Lawal, Najeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Thörnberg, Benny
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Architecture Exploration Based on Tasks Partitioning Between Hardware, Software and Locality for a Wireless Vision Sensor Node2012In: International Journal of Distributed Systems and Technologies, ISSN 1947-3532, E-ISSN 1947-3540, Vol. 3, no 2, p. 58-71Article in journal (Refereed)
    Abstract [en]

    Wireless Vision Sensor Networks (WVSNs) is an emerging field which consists of a number of Visual Sensor Nodes (VSNs). Compared to traditional sensor networks, WVSNs operates on two dimensional data, which requires high bandwidth and high energy consumption. In order to minimize the energy consumption, the focus is on finding energy efficient and programmable architectures for the VSN by partitioning the vision tasks among hardware (FPGA), software (Micro-controller) and locality (sensor node or server). The energy consumption, cost and design time of different processing strategies is analyzed for the implementation of VSN. Moreover, the processing energy and communication energy consumption of VSN is investigated in order to maximize the lifetime. Results show that by introducing a reconfigurable platform such as FPGA with small static power consumption and by transmitting the compressed images after pixel based tasks from the VSN results in longer battery lifetime for the VSN.

  • 29.
    Imran, Muhammad
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Khursheed, Khursheed
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    O’ Nills, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Gustafsson, Oscar
    Linköping University.
    On the number representation in sub-expression sharing2010In: International Conference on Signals and Electronic Systems, ICSES'10 - Conference Proceeding 2010,, IEEE conference proceedings, 2010, p. 17-20Conference paper (Refereed)
    Abstract [en]

    The core of many DSP tasks is Multiplication ofone data with several constants, i.e. in Digital filtering, image processing DCT and DFT. The Modern Portable equipments like Cellular phones and MP3 players which has DSP circuits,involve large number of multiplications of one variable with several constants (MCM) which leads to large area, delay and energy consumption in hardware. Multiplication operation can be realized using addition/subtraction and shifts without general multipliers. Different number representations are used in MCM algorithms and there are differnet views about different representations. Some of the authors termed the Canonic Signed Digit (CSD) representation as better for subexpression sharing. We have compared the results of CSD and Binary representations using our Generalized MCM Algorithm on Random Matrices and come to conclusion that binary representation is better compared to CSD when a system has multiple inputs and multiple outputs.

  • 30.
    Imran, Muhammad
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Khursheed, Khursheed
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    O’ Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Lawal, Najeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Exploration of Target Architecture for aWireless Camera Based Sensor Node2010In: 28th Norchip Conference, NORCHIP 2010, IEEE conference proceedings, 2010, p. 1-4Conference paper (Refereed)
    Abstract [en]

    The challenges associated with wireless vision sensor networks are low energy consumption, less bandwidth and limited processing capabilities. In order to meet these challenges different approaches are proposed. Research in wireless vision sensor networks has been focused on two different assumptions, first is sending all data to the central base station without local processing, second approach is based on conducting all processing locally at the sensor node and transmitting only the final results. Our research is focused on partitioning the vision processing tasks between Senor node and central base station. In this paper we have added the exploration dimension to perform some of the vision tasks such as image capturing, background subtraction, segmentation and Tiff Group4 compression on FPGA while communication on microcontroller. The remaining vision processing tasks i.e. morphology, labeling, bubble remover and classification are processed on central base station. Our results show that the introduction of FPGA for some of the visual tasks will result in a longer life time for the visual sensor node while the architecture is still programmable.

  • 31.
    Imran, Muhammad
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Kardeby, Victor
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information and Communication systems.
    Munir, Huma
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    STC-CAM1, IR-visual based smart camera system2015In: ACM International Conference Proceeding Series, Association for Computing Machinery (ACM), 2015, p. 195-196Conference paper (Refereed)
    Abstract [en]

    Safety-critical applications require robust and real-time surveillance. For such applications, a vision sensor alone can give false positive results because of poor lighting conditions, occlusion, or different weather conditions. In this work, a visual sensor is complemented by an infrared thermal sensor which makes the system more resilient in unfavorable situations. In the proposed camera architecture, initial data intensive tasks are performed locally on the sensor node and then compressed data is transmitted to a client device where remaining vision tasks are performed. The proposed camera architecture is demonstrated as a proof-ofconcept and it offers a generic architecture with better surveillance while only performing low complexity computations on the resource constrained devices.

  • 32.
    Imran, Muhammad
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    O’Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Lawal, Najeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Demo: SRAM FPGA based Wireless Smart Camera: SENTIOF-CAM2014In: Proceedings of the International Conference on Distributed Smart Cameras, 2014, article id a41Conference paper (Refereed)
    Abstract [en]

    Wireless Sensor Networks applications with huge amount of datarequirements are attracting the utilization of high performanceembedded platforms i.e. Field Programmable Gate Arrays(FPGAs) for in-node sensor processing. However, the designcomplexity, high configuration and static energies of SRAMFPGAs impose challenges for duty cycled applications. In thisdemo, we demonstrate the functionality of SRAM FPGA basedwireless vision sensor node called SENTIOF-CAM. Thedemonstration shows that by using intelligent techniques, a lowenergy and low complexity SRAM FPGA based wireless visionsensor node can be realized for duty cycled applications.

  • 33.
    Imran, Muhammad
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    O’Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Lawal, Najeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Energy Driven Selection and Hardware Implementation of Bi-Level Image Compression2014In: Proceedings of the International Conference on Distributed Smart Cameras, ACM Press, 2014, article id a32Conference paper (Refereed)
    Abstract [en]

    Wireless Vision Sensor Nodes are considered to have smaller resources and are expected to have a longer lifetime based on the available limited energy. A wireless Vision Sensor Node (VSN) is often characterized to consume more energy in communication as compared to processing. The communication energy can be reduced by reducing the amount of transmission data with the help of a suitable compression scheme. This work investigates bi-level compression schemes including G4, G3, JBIG2, Rectangular, GZIP, GZIP_Pack and JPEG-LS on a hardware platform. The investigation results show that GZIP_pack, G4 and JBIG2 schemes are suitable for a hardware implemented VSN. JBIG2 offers up to a 43 percent reduction in overall energy consumption as compared to G4 and GZIP_pack for complex images. However, JBIG2 has higher resource requirement and implementation complexity. The difference in overall energy consumption is smaller for smooth images. Depending on the application requirement, the exclusion of a header can reduce the energy consumption by approximately 1 to 33 percent.

  • 34.
    Imran, Muhammad
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Munir, Huma
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Thörnberg, Benny
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Low complexity FPGA based background subtraction technique for thermal imagery2015In: ACM International Conference Proceeding Series, Association for Computing Machinery (ACM), 2015, p. 1-6Conference paper (Refereed)
    Abstract [en]

    Embedded smart camera systems are gaining popularity for a number of real world surveillance applications. However, there are still challenges, i.e. variation in illumination, shadows, occlusion, and weather conditions while employing the vision algorithms in outdoor environments. For safety-critical surveillance applications, the visual sensors can be complemented with beyond-visual-range sensors. This in turn requires analysis, development and modification of existing imaging techniques. In this work, a low complexity background modelling and subtraction technique has been proposed for thermal imagery. The proposed technique has been implemented on Field Programmable Gate Arrays (FPGAs) after in-depth analysis of different sets of images, characterizing poor signal-to-noise ratio challenges, e.g. motion of high frequency background objects, temperature variation and camera jitter etc. The proposed technique dynamically updates the background on pixel level and requires a single frame storage as opposed to existing techniques. The comparison of this approach with two other approaches show that this approach performs better in different environmental conditions. The proposed technique has been modelled in Register Transfer Logic (RTL) and implementation on the latest FPGAs shows that the design requires less than 1 percent logics, 47 percent block RAMs, and consumes 91 mW power consumption on Artix-7 100T FPGA.

  • 35.
    Imran, Muhammad
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Rinner, Bernhard
    Alpen-Adria-Universität, Institute of Networked and Embedded Systems, Lakeside Park B02b, Klagenfurt, Austria .
    Zand, Sajjad Zandi
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Exploration of preprocessing architectures for field-programmable gate array-based thermal-visual smart camera2016In: Journal of Electronic Imaging (JEI), ISSN 1017-9909, E-ISSN 1560-229X, Vol. 25, no 4, article id 041006Article in journal (Refereed)
    Abstract [en]

    Embedded smart cameras are gaining in popularity for a number of real-Time outdoor surveillance applications. However, there are still challenges, i.e., computational latency, variation in illumination, and occlusion. To solve these challenges, multimodal systems, integrating multiple imagers can be utilized. However, trade-off is more stringent requirements on processing and communication for embedded platforms. To meet these challenges, we investigated two low-complexity and high-performance preprocessing architectures for a multiple imagers' node on a field-programmable gate array (FPGA). In the proposed architectures, majority of the tasks are performed on the thermal images because of the lower spatial resolution. Analysis with different sets of images show that the system with proposed architectures offers better detection performance and can reduce output data from 1.7 to 99 times as compared with full-size images. The proposed architectures can achieve a frame rate of 53 fps, logics utilization from 2.1% to 4.1%, memory consumption 987 to 148 KB and power consumption in the range of 141 to 163 mW on Artix-7 FPGA. This concludes that the proposed architectures offer reduced design complexity and lower processing and communication requirements while retaining the configurability of the system.

  • 36.
    Imran, Muhammad
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Shahzad, Khurram
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Ahmad, Naeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Lawal, Najeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Oelmann, Bengt
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Energy Efficient SRAM FPGA based Wireless Vision Sensor Node: SENTIOF‐CAM2014In: IEEE transactions on circuits and systems for video technology (Print), ISSN 1051-8215, E-ISSN 1558-2205, Vol. 24, no 12, p. 2132-2143Article in journal (Refereed)
    Abstract [en]

    Many Wireless Vision Sensor Networks (WVSNs) applications are characterized to have a low duty cycling. An individual wireless Vision Senor Node (VSN) in WVSN is required to operate with limited resources i.e., processing, memory and wireless bandwidth on available limited energy. For such resource constrained VSN, this paper presents a low complexity, energy efficient and programmable VSN architecture based on a design matrix which includes partitioning of processing load between the node and a server, a low complexity background subtraction, bi-level video coding and duty cycling. The tasks partitioning and proposed background subtraction reduces the processing energy and design complexity for hardware implemented VSN. The bi-level video coding reduces the communication energy whereas the duty cycling conserves energy for lifetime maximization. The proposed VSN, referred to as SENTIOF-CAM, has been implemented on a customized single board, which includes SRAM FPGA, microcontroller, radio transceiver and a FLASH memory. The energy values are measured for different states and results are compared with existing solutions. The comparison shows that the proposed solution can offer up to 69 times energy reduction. The lifetime based on measured energy values shows that for a sample period of 5 minutes, a 3.2 years lifetime can be achieved with a battery of 37.44 kJ energy. In addition to this, the proposed solution offers generic architecture with smaller design complexity on a hardware reconfigurable platform and offers easy adaptation for a number of applications.

  • 37.
    Imran, Muhammad
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Wang, Xu
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Lawal, Najeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Pre-processing Architecture for IR-Visual Smart Camera Based on Post-Processing Constraints2016Conference paper (Refereed)
    Abstract [en]

    In embedded vision systems, the efficiency of pre-processing architectures have a ripple effect on post-processing functions such as feature extraction, classification and recognition. In this work, we investigated a pre-processing architecture for smart camera system, integrating a thermal and vision sensors, by considering the constraints of post-processing. By utilizing the locality feature of the system, we performed pre-processing on the camera node by using FPGA and post-processing on the client device by using the microprocessor platform, NVIDIA Tegra. The study shows that for outdoor people surveillance applications with complex background and varying lighting conditions, the pre-processing architecture, which transmits thermal binary Region-of-Interest (ROI) images, offers better classification accuracy and smaller complexity as compared to alternative approaches.

  • 38. Jantsch, A
    et al.
    Kumar, S
    Sander, I
    Svantesson, B
    Öberg, J
    Hemani, A
    Ellervee, P
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Comparison of Six Languages for System Level Descriptions of Telecom Systems2001In: Electronic Chips & Systems Design Languages, Boston, Mass.: Kluwer Academic Publishers, 2001, p. 320-Chapter in book (Other academic)
    Abstract [en]

    Language evaluation for various purposes is an often repeated exercise in industry and academia. Due to the large number of influencing factors the dependence of the result on implicit or explicit assumptions is not always apparent and clear. Based on a systematic evaluation method with a large number of criteria we compare six languages with respect to the suitability as a system specification and description language for telecom applications. The languages under evaluation are VHDL, C++, SDL, Haskell, Erlang, and ProGram, which represent different paradigms. The evaluation method allows to give specific emphasis on particular aspects in a controlled way, which we use to make separate comparisons for pure software systems, pure hardware systems and mixed HW/SW systems.

  • 39. Jantsch, A
    et al.
    Kumar, S
    Sander, I
    Svantesson, B
    Öberg, J
    Hemani, A
    Ellervee, P
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Conparison of six languages for system level descriptions of telecom systems1998In: Proceedings / FDL'98 / First International Forum on Design Languages: Integrated Systems Center of the Swiss Federal Inst. of Technology. Vol.2., Lausanne: Swiss Federal Inst. Of techn., , 1998, p. 160-Conference paper (Refereed)
    Abstract [en]

    Language evaluation for various purposes is an often repeated exercise in industry and academia. Due to the large number of influencing factors the dependence of the result on implicit or explicit assumptions is not always apparent and clear. Based on a systematic evaluation method with a large number of criteria we compare six languages with respect to the suitability as a system specification and description language for telecom applications. The languages under evaluation are VHDL, C++, SDL, Haskell, Erlang, and ProGram, which represent different paradigms. The evaluation method allows to give specific emphasis on particular aspects in a controlled way, which we use to make separate comparisons for pure software systems, pure hardware systems and mixed HW/SW systems.

  • 40.
    Khursheed, Khursheed
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Ahmad, Naeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Imran, Muhammad
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Binary video codec for data reduction in wireless visual sensor networks2013In: Proceedings of SPIE - The International Society for Optical Engineering / [ed] Kehtarnavaz, N; Carlsohn, MF, SPIE - International Society for Optical Engineering, 2013, p. Art. no. 86560L-Conference paper (Refereed)
    Abstract [en]

    Wireless Visual Sensor Networks (WVSN) is formed by deploying many Visual Sensor Nodes (VSNs) in the field. Typical applications of WVSN include environmental monitoring, health care, industrial process monitoring, stadium/airports monitoring for security reasons and many more. The energy budget in the outdoor applications of WVSN is limited to the batteries and the frequent replacement of batteries is usually not desirable. So the processing as well as the communication energy consumption of the VSN needs to be optimized in such a way that the network remains functional for longer duration. The images captured by VSN contain huge amount of data and require efficient computational resources for processing the images and wide communication bandwidth for the transmission of the results. Image processing algorithms must be designed and developed in such a way that they are computationally less complex and must provide high compression rate. For some applications of WVSN, the captured images can be segmented into bi-level images and hence bi-level image coding methods will efficiently reduce the information amount in these segmented images. But the compression rate of the bi-level image coding methods is limited by the underlined compression algorithm. Hence there is a need for designing other intelligent and efficient algorithms which are computationally less complex and provide better compression rate than that of bi-level image coding methods. Change coding is one such algorithm which is computationally less complex (require only exclusive OR operations) and provide better compression efficiency compared to image coding but it is effective for applications having slight changes between adjacent frames of the video. The detection and coding of the Region of Interest (ROIs) in the change frame efficiently reduce the information amount in the change frame. But, if the number of objects in the change frames is higher than a certain level then the compression efficiency of both the change coding and ROI coding becomes worse than that of image coding. This paper explores the compression efficiency of the Binary Video Codec (BVC) for the data reduction in WVSN. We proposed to implement all the three compression techniques i.e. image coding, change coding and ROI coding at the VSN and then select the smallest bit stream among the results of the three compression techniques. In this way the compression performance of the BVC will never become worse than that of image coding. We concluded that the compression efficiency of BVC is always better than that of change coding and is always better than or equal that of ROI coding and image coding. © COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.

  • 41.
    Khursheed, Khursheed
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Ahmad, Naeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Imran, Muhammad
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Detecting and Coding Region of Interests in Bi-Level Images for Data Reduction in Wireless Visual Sensor Network2012In: Wireless and Mobile Computing, Networking and Communications (WiMob), 2012 IEEE 8th International Conference on, IEEE conference proceedings, 2012, p. 705-712Conference paper (Refereed)
    Abstract [en]

    Wireless Visual Sensor Network (WVSN) is formed by deploying many Visual Sensor Nodes (VSNs) in the field. The VSNs acquire images of the area of interest in the field, perform some local processing on these images and transmit the results using an embedded wireless transceiver. The energy consumption on transmitting the results wirelessly is correlated with the information amount that is being transmitted.  The images acquired by the VSNs contain huge amount of data due to many kinds of redundancies in the images. Suitable bi-level image compression standards can efficiently reduce the information amount in images and will thus be effective in reducing the communication energy consumption in the WVSN. But compression capability of the bi-level image compression standards is limited to the underline compression algorithm. Further data reduction can be achieved by detecting Region of Interest (ROI) in the bi-level images and then coding these ROIs using bi-level image compression method. We explored the compression performance of the lossless ROI detection and coding method for various kinds of changes such as different shapes, locations and number of objects in the continuous set of frames. The CCITT Group 4, JBIG2 and Gzip are used for coding the detected ROIs. We concluded that CCITT Group 4 is a better choice for coding the ROIs in the Bi-level images because of its comparatively good compression performance and less computational complexity. This paper is intended to be a resource for the researchers interested in reducing the amount of data in the bi-level images for energy constrained WVSNs.

  • 42.
    Khursheed, Khursheed
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Ahmad, Naeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Imran, Muhammad
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Performance analysis of bi-level image compression methods for machine vision embedded applicationsManuscript (preprint) (Other academic)
  • 43.
    Khursheed, Khursheed
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Ahmad, Naeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Imran, Muhammad
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    The effect of packets relaying on the implementation issues of the visual sensor node2013In: Electronics and Electrical Engineering, ISSN 1392-1215, Vol. 19, no 10, p. 155-161Article in journal (Refereed)
    Abstract [en]

    Wireless Visual Sensor Networks (WVSNs) are used for the monitoring of large and inaccessible areas. WVSNs are feasible today due to the advancement in many fields of electronics such as CMOS cameras, low power computing platforms, distributed computing and radio transceivers. The energy budget in a WVSN is limited because of the wireless nature of the applications and the small physical size of the Visual Sensor Node (VSN). The WVSN covers a large area where every node cannot transmit its results directly to the server. Receiving and forwarding other node's packets consumes a large portion of the energy budget of the VSNs. This paper explores the effect of packets relaying in a multihop WVSN on the implementation issues of the VSN. It also explores the effect of node density in the multihop WVSN on the energy consumption, which in turn, has an impact on the lifetime of the VSN. Results show that the network topology does not affect the software implementation of the VSN because of the relatively high execution time of the image processing tasks on the microcontroller. For hardware implementation, network topology and node density does affect the architecture of the VSN due to the fact that communication energy consumption is dominant (because of the low execution time on FPGAs).

  • 44.
    Khursheed, Khursheed
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Imran, Muhammad
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Ahmad, Naeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Analysis of change coding for data reduction in wireless visual sensor networkManuscript (preprint) (Other academic)
  • 45.
    Khursheed, Khursheed
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Imran, Muhammad
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Ahmad, Naeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Bi-Level Video Codec for Machine Vision Embedded Applications2013In: Elektronika Ir Elektrotechnika, ISSN 1392-1215, Vol. 19, no 8, p. 93-96Article in journal (Refereed)
    Abstract [en]

    Wireless Visual Sensor Networks (WVSN) are feasible today due to the advancement in many fields of electronics such as Complementary Metal Oxide Semiconductor (CMOS) cameras, low power electronics, distributed computing and radio transceivers. The energy budget in WVSN is limited due to the small form factor of the Visual Sensor Nodes (VSNs) and the wireless nature of the application. The images captured by VSN contain huge amount of data which leads to high communication energy consumptions. Hence there is a need for designing efficient algorithms which are computationally less complex and provide high compression ratio. The change coding and Region of Interest (ROIs) coding are the options for data reduction of the VSN. But, for higher number of objects in the images, the compression efficiency of both the change coding and ROI coding becomes worse than that of image coding. This paper explores the compression efficiency of the Bi-Level Video Codec (BVC) for several representative machine vision applications. We proposed to implement image coding, change coding and ROI coding at the VSN and to select the smallest bit stream among the three. Results show that the compression performance of the BVC for such applications is always better than that of change coding and ROI coding.

  • 46.
    Khursheed, Khursheed
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Imran, Muhammad
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Ahmad, Naeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Efficient Data Reduction Techniques for Remote Applications of a Wireless Visual Sensor Network2013In: International Journal of Advanced Robotic Systems, ISSN 1729-8806, E-ISSN 1729-8814, Vol. 10, p. Art. no. 240-Article in journal (Refereed)
    Abstract [en]

    A Wireless Visual Sensor Network (WVSN) is formed by deploying many Visual Sensor Nodes (VSNs) in the field. After acquiring an image of the area of interest, the VSN performs local processing on it and transmits the result using an embedded wireless transceiver. Wireless data transmission consumes a great deal of energy, where energy consumption is mainly dependent on the amount of information being transmitted. The image captured by the VSN contains a huge amount of data. For certain applications, segmentation can be performed on the captured images. The amount of information in the segmented images can be reduced by applying efficient bi-level image compression methods. In this way, the communication energy consumption of each of the VSNs can be reduced. However, the data reduction capability of bi-level image compression standards is fixed and is limited by the used compression algorithm. For applications attributing few changes in adjacent frames, change coding can be applied for further data reduction. Detecting and compressing only the Regions of Interest (ROIs) in the change frame is another possibility for further data reduction. In a communication system, where both the sender and the receiver know the employed compression standard, there is a possibility for further data reduction by not including the header information in the compressed bit stream of the sender. This paper summarizes different information reduction techniques such as image coding, change coding and ROI coding. The main contribution is the investigation of the combined effect of all these coding methods and their application to a few representative real life applications. This paper is intended to be a resource for researchers interested in techniques for information reduction in energy constrained embedded applications.

  • 47.
    Khursheed, Khursheed
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Imran, Muhammad
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Ahmad, Naeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Selection of bi-level image compression method for reduction of communication energy in wireless visual sensor networks2012In: SPIE: Proc. SPIE 8437, 84370M (2012), 2012Conference paper (Refereed)
    Abstract [en]

    Wireless Visual Sensor Network (WVSN) is an emerging field which combines image sensor, on board computation unit, communication component and energy source. Compared to the traditional wireless sensor network, which operates on one dimensional data, such as temperature, pressure values etc., WVSN operates on two dimensional data (images) which requires higher processing power and communication bandwidth. Normally, WVSNs are deployed in areas where installation of wired solutions is not feasible. The energy budget in these networks is limited to the batteries, because of the wireless nature of the application. Due to the limited availability of energy, the processing at Visual Sensor Nodes (VSN) and communication from VSN to server should consume as low energy as possible. Transmission of raw images wirelessly consumes a lot of energy and requires higher communication bandwidth. Data compression methods reduce data efficiently and hence will be effective in reducing communication cost in WVSN. In this paper, we have compared the compression efficiency and complexity of six well known bi-level image compression methods. The focus is to determine the compression algorithms which can efficiently compress bi-level images and their computational complexity is suitable for computational platform used in WVSNs. These results can be used as a road map for selection of compression methods for different sets of constraints in WVSN.

  • 48.
    Khursheed, Khursheed
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Imran, Muhammad
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Malik, Abdul Waheed
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Lawal, Najeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Thörnberg, Benny
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Exploration of tasks partitioning between hardware software and locality for a wireless camera based vision sensor node2011In: Proceedings - 6th International Symposium on Parallel Computing in Electrical Engineering, PARELEC 2011, IEEE conference proceedings, 2011, p. 127-132Conference paper (Refereed)
    Abstract [en]

    In this paper we have explored different possibilities for partitioning the tasks between hardware, software and locality for the implementation of the vision sensor node, used in wireless vision sensor network. Wireless vision sensor network is an emerging field which combines image sensor, on board computation and communication links. Compared to the traditional wireless sensor networks which operate on one dimensional data, wireless vision sensor networks operate on two dimensional data which requires higher processing power and communication bandwidth. The research focus within the field of wireless vision sensor networks have been on two different assumptions involving either sending raw data to the central base station without local processing or conducting all processing locally at the sensor node and transmitting only the final results. Our research work focus on determining an optimal point of hardware/software partitioning as well as partitioning between local and central processing, based on minimum energy consumption for vision processing operation. The lifetime of the vision sensor node is predicted by evaluating the energy requirement of the embedded platform with a combination of FPGA and micro controller for the implementation of the vision sensor node. Our results show that sending compressed images after pixel based tasks will result in a longer battery life time with reasonable hardware cost for the vision sensor node. © 2011 IEEE.

  • 49.
    Khursheed, Khursheed
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Imran, Muhammad
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Lawal, Najeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Exploration of Local and Central Processing for a Wireless Camera Based Sensor Node2010In: International Conference on Signals and Electronic Systems, ICSES'10 - Conference Proceeding 2010, Article number 5595231, IEEE conference proceedings, 2010, p. 147-150Conference paper (Refereed)
    Abstract [en]

    Wireless vision sensor network is an emerging field which combines image sensor, on board computation and communication links. Compared to the traditional wireless sensor networks which operate on one dimensional data, wireless vision sensor networks operate on two dimensional data which requires both higher processing power and communication bandwidth. The research focus within the field of wireless vision sensor network has been based on two different assumptions involving either sending data to the central base station without local processing or conducting all processing locally at the sensor node and transmitting only the final results. In this paper we focus on determining an optimal point for intelligence partitioning between the sensor node and the central base station and by exploring compression methods. The lifetime of the visual sensor node is predicted by evaluating the energy consumption for different levels of intelligence partitioning at the sensor node. Our results show that sending compressed images after segmentation will result in a longer life for the sensor node.

  • 50.
    Lawal, Najeem
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Embedded FPGA memory requirements for real-time video processing applications2005In: 23rd NORCHIP Conference 2005, IEEE conference proceedings, 2005, p. 206-209, article id 1597025Conference paper (Refereed)
    Abstract [en]

    FPGAs show interesting properties for real-time implementation of video processing systems. An important feature is the available on-chip RAM blocks embedded on the FPGAs. This paper presents an analysis of the current and future requirements of video processing systems put on these embedded memory resources. The analysis is performed such that a set of video processing systems are allocated onto different existing and extrapolated FPGA architectures. The analysis shows that FPGAs should support multiple memory sizes to take full advantage of the architecture. These results are valuable for both designers of systems and for planning the development of new FPGA architectures

123 1 - 50 of 137
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf