miun.sePublications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Zamani, Ali
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information and Communication systems.
    Cross-Platform Diagnostic Tool2013Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    In Automotive Industries, to be confident regarding the success of a planned operation, performing accurate methods in order to detect abnormal operating conditions, known as faults, is crucial. An effective method for diagnosis and fault recognition ensures the safety of the operation, reduces manufacturing cost and any other potential impacts. In addition, mobile solutions have been widely adopted among automotive manufactures during recent years and they have taken full advantage of mobile strategies. Accordingly, it is necessary for there to be a future-proof plan to control the diagnostic operations in advance. In this thesis, the immediate objective has been to offer a future-proof and user-friendly solution to assist engineers and service technicians in the monitoring, detecting, and diagnosing of faults on Toyota/BT/CESAB branded trucks. A mobile cross-platform framework is used to develop the diagnostic mobile solution which is not only able to be deployed on Android and iOS mobile platforms, but also provides wireless communication between truck machines and mobile devices through Bluetooth and Wi-Fi ad hoc technologies. The diagnostic mobile tool is capable of processing real-time controller area network messages and visualizing the condition of different sensors in a more user-friendly way through rich hybrid and client-side web user interfaces. The experience of evaluating a cross-platform diagnostic tool on different mobile operating systems proved that cross-platform mobile development methodology can be a reliable technique for developing projects that essentially require real-time data processing. In addition, it indicates that Apple iOS offers a better runtime performance than Google Android for the current tool.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf