miun.sePublications
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Apro, William
    et al.
    Swedish Sch Sport & Hlth Sci, Astrand Lab, SE-11486 Stockholm, Sweden.
    Moberg, Marcus
    Swedish Sch Sport & Hlth Sci, Astrand Lab, SE-11486 Stockholm, Sweden.
    Hamilton, D. Lee
    Univ Stirling, Hlth & Exercise Sci Res Grp, Stirling FK9 4LA, Scotland.
    Ekblom, Björn
    Swedish Sch Sport & Hlth Sci, Astrand Lab, SE-11486 Stockholm, Sweden.
    van Hall, Gerrit
    Univ Copenhagen, Rigshosp, Dept Biomed Sci, DK-1168 Copenhagen, Denmark.
    Holmberg, Hans-Christer
    Mid Sweden University, Faculty of Human Sciences, Department of Health Sciences.
    Blomstrand, Eva
    Swedish Sch Sport & Hlth Sci, Astrand Lab, SE-11486 Stockholm, Sweden.
    Resistance exercise-induced S6K1 kinase activity is not inhibited in human skeletal muscle despite prior activation of AMPK by high-intensity interval cycling2015In: American Journal of Physiology. Endocrinology and Metabolism, ISSN 0193-1849, E-ISSN 1522-1555, Vol. 308, no 6, p. E470-E481Article in journal (Refereed)
    Abstract [en]

    Combining endurance and strength training in the same session has been reported to reduce the anabolic response to the latter form of exercise. The underlying mechanism, based primarily on results from rodent muscle, is proposed to involve AMPK-dependent inhibition of mTORC1 signaling. This hypothesis was tested in eight trained male subjects who in randomized order performed either resistance exercise only (R) or interval cycling followed by resistance exercise (ER). Biopsies taken from the vastus lateralis before and after endurance exercise and repeatedly after resistance exercise were assessed for glycogen content, kinase activity, protein phosphorylation, and gene expression. Mixed muscle fractional synthetic rate was measured at rest and during 3 h of recovery using the stable isotope technique. In ER, AMPK activity was elevated immediately after both endurance and resistance exercise (similar to 90%, P < 0.05) but was unchanged in R. Thr(389) phosphorylation of S6K1 was increased severalfold immediately after exercise (P < 0.05) in both trials and increased further throughout recovery. After 90 and 180 min recovery, S6K1 activity was elevated (similar to 55 and similar to 110%, respectively, P < 0.05) and eukaryotic elongation factor 2 phosphorylation was reduced (similar to 55%, P < 0.05) with no difference between trials. In contrast, markers for protein catabolism were differently influenced by the two modes of exercise; ER induced a significant increase in gene and protein expression of MuRF1 (P < 0.05), which was not observed following R exercise only. In conclusion, cycling-induced elevation in AMPK activity does not inhibit mTOR complex 1 signaling after subsequent resistance exercise but may instead interfere with the hypertrophic response by influencing key components in protein breakdown.

  • 2. Fluckey, James D.
    et al.
    Knox, Micheal
    Smith, Latasha
    Dupont-Versteegden, Esther E.
    Gaddy, Dana
    Tesch, Per A
    Mid Sweden University, Faculty of Human Sciences, Department of Health Sciences.
    Peterson, Charlotte A.
    Insulin-facilitated increase of muscle protein synthesis after resistance exercise involves a MAP kinase pathway.2006In: American Journal of Physiology. Endocrinology and Metabolism, ISSN 0193-1849, E-ISSN 1522-1555, Vol. 290, no 6, p. E1205-E1211Article in journal (Refereed)
    Abstract [en]

    Recent studies have implicated the mTOR-signaling pathway as a primary component for muscle growth in mammals. The purpose of this investigation was to examine signaling pathways for muscle protein synthesis after resistance exercise. Sprague-Dawley rats (male, 6 mo old) were assigned to either resistance exercise or control groups. Resistance exercise was accomplished in operantly conditioned animals using a specially designed flywheel apparatus. Rats performed two sessions of resistance exercise, separated by 48 h, each consisting of 2 sets of 25 repetitions. Sixteen hours after the second session, animals were killed, and soleus muscles were examined for rates of protein synthesis with and without insulin and/or rapamycin (mTOR inhibitor) and/or PD-098059 (PD; MEK kinase inhibitor). Results of this study demonstrated that rates of synthesis were higher (P 0.05) with insulin after exercise compared with without insulin, or to control muscles, regardless of insulin. Rapamycin lowered (P 0.05) rates of synthesis in controls, with or without insulin, and after exercise without insulin. However, insulin was able to overcome the inhibition of rapamycin after exercise (P 0.05). PD had no effect on protein synthesis in control rats, but the addition of PD to exercised muscle resulted in lower (P 0.05) rates of synthesis, and this inhibition was not rescued by insulin. Western blot analyses demonstrated that the inhibitors used in the present study were selective and effective for preventing activation of specific signaling proteins. Together, these results suggest that the insulin-facilitated increase of muscle protein synthesis after resistance exercise requires multiple signaling pathways.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf