miun.sePublikasjoner
Endre søk
Begrens søket
1 - 1 of 1
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Flodén, Liselott
    et al.
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för kvalitetsteknik, maskinteknik och matematik.
    Holmbom, Anders
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för kvalitetsteknik, maskinteknik och matematik.
    Olsson Lindberg, Marianne
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för kvalitetsteknik, maskinteknik och matematik.
    Persson, Jens
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för kvalitetsteknik, maskinteknik och matematik.
    Homogenization of parabolic equations with an arbitrary number of scales in both space and time2014Inngår i: Journal of Applied Mathematics, ISSN 1110-757X, E-ISSN 1687-0042, s. Art. no. 101685-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The main contribution of this paper is the homogenization of the linearparabolic equationtu (x, t) − ·axq1, ...,xqn,tr1, ...,trmu (x, t)= f(x, t)exhibiting an arbitrary finite number of both spatial and temporal scales.We briefly recall some fundamentals of multiscale convergence and providea characterization of multiscale limits for gradients in an evolution settingadapted to a quite general class of well-separated scales, which we nameby jointly well-separated scales (see Appendix for the proof). We proceedwith a weaker version of this concept called very weak multiscale convergence.We prove a compactness result with respect to this latter typefor jointly well-separated scales. This is a key result for performing thehomogenization of parabolic problems combining rapid spatial and temporaloscillations such as the problem above. Applying this compactnessresult together with a characterization of multiscale limits of sequences ofgradients we carry out the homogenization procedure, where we togetherwith the homogenized problem obtain n local problems, i.e. one for eachspatial microscale. To illustrate the use of the obtained result we apply itto a case with three spatial and three temporal scales with q1 = 1, q2 = 2and 0 < r1 < r2.MSC: 35B27; 35K10

    Fulltekst (pdf)
    fulltext
1 - 1 of 1
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf