miun.sePublications
Change search
Refine search result
1 - 12 of 12
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Balliu, Enkeleda
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Engholm, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Öhlund, Thomas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Selective laser sintering of inkjet-printed silver nanoparticle inks on paper substrates to achieve highly conductive patterns2018In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 8, no 1, article id 10408Article in journal (Refereed)
    Abstract [en]

    Development of cost-effective and environmentally friendly manufacturing methods will enable important advances for the production of large-scale flexible electronics. Laser processing has shown to be a promising candidate that offers a fast and non-destructive way to produce highly conductive patterns on flexible substrates such as plastics. However, an emerging option with a lower environmental impact is instead the use of cellulose-based flexible substrates, such as paper. In this work we investigate the use of laser sintering of silver nanoparticle inks, which were inkjet-printed on three different types of paper. Patterns with a high conductivity could be manufactured where a special care was taken to prevent the substrates from damage by the intense laser light. We found that the best results was obtained for a photopaper, with a conductivity of 1.63 107 S/m corresponding to nearly 26% of the bulk silver conductivity. In addition, we demonstrate laser sintering to fabricate a fully functional near field communication tag printed on a photopaper. Our results can have an important bearing for the development of cost-effective and environmentally friendly production methods for flexible electronics on a large scale. 

  • 2.
    Blomquist, Nicklas
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Alimadadi, Majid
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Hummelgård, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Dahlström, Christina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Olsen, Martin
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Effects of Geometry on Large-scale Tube-shear Exfoliation of Multilayer Graphene and Nanographite in Water2019In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 9, no 1, article id 8966Article in journal (Refereed)
    Abstract [en]

    Industrially scalable methods for the production of graphene and other nanographites are needed to achieve cost-efficient commercial products. At present, there are several available routes for the production of these materials but few allow large-scale manufacturing and environmentally friendly low-cost solvents are rarely used. We have previously demonstrated a scalable and low-cost industrial route to produce nanographites by tube-shearing in water suspensions. However, for a deeper understanding of the exfoliation mechanism, how and where the actual exfoliation occurs must be known. This study investigates the effect of shear zone geometry, straight and helical coil tubes, on this system based on both numerical simulation and experimental data. The results show that the helical coil tube achieves a more efficient exfoliation with smaller and thinner flakes than the straight version. Furthermore, only the local wall shear stress in the turbulent flow is sufficient for exfoliation since the laminar flow contribution is well below the needed range, indicating that exfoliation occurs at the tube walls. This explains the exfoliation mechanism of water-based tube-shear exfoliation, which is needed to achieve scaling to industrial levels of few-layer graphene with known and consequent quality.

  • 3.
    Blomquist, Nicklas
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences. STT Emtec AB, Sundsvall.
    Wells, Thomas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Andres, Britta
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Bäckström, Joakim
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Forsberg, Sven
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Metal-free supercapacitor with aqueous electrolyte and low-cost carbon materials2017In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 7, article id 39836Article in journal (Refereed)
    Abstract [en]

    Electric double-layer capacitors (EDLCs) or supercapacitors (SCs) are fast energy storage devices with high pulse efficiency and superior cyclability, which makes them useful in various applications including electronics, vehicles and grids. Aqueous SCs are considered to be more environmentally friendly than those based on organic electrolytes. Because of the corrosive nature of the aqueous environment, however, expensive electrochemically stable materials are needed for the current collectors and electrodes in aqueous SCs. This results in high costs for a given energy-storage capacity. To address this, we developed a novel low-cost aqueous SC using graphite foil as the current collector and a mix of graphene, nanographite, simple water-purification carbons and nanocellulose as electrodes. The electrodes were coated directly onto the graphite foil by using casting frames and the SCs were assembled in a pouch cell design. With this approach, we achieved a material cost reduction of greater than 90% while maintaining approximately one-half of the specific capacitance of a commercial unit, thus demonstrating that the proposed SC can be an environmentally friendly, low-cost alternative to conventional SCs.

  • 4.
    Jiang, Liying
    et al.
    Stockholm Univ, Dept Analyt Chem, SE-10691 Stockholm, Sweden.
    Dziedzic, Pawel
    Stockholm Univ, Dept Organ Chem, SE-10691 Stockholm, Sweden.
    Spacil, Zdenek
    Stockholm Univ, Dept Analyt Chem, SE-10691 Stockholm, Sweden.
    Zhao, Gui-Ling
    Stockholm Univ, Dept Organ Chem, SE-10691 Stockholm, Sweden.
    Nilsson, Lennart
    Karolinska Inst, SE-17177 Stockholm, Sweden.
    Ilag, Leopold L.
    Stockholm Univ, Dept Analyt Chem, SE-10691 Stockholm, Sweden.
    Cordova, Armando
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences. Stockholm Univ, Dept Organ Chem, SE-10691 Stockholm, Sweden.
    Abiotic synthesis of amino acids and self-crystallization under prebiotic conditions2014In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 4, p. Art. no. 6769-Article in journal (Refereed)
    Abstract [en]

    Building on previous research on the origin and homochirality of life, this study focuses on analyses profiling important building blocks of life: the natural amino acids. The spark discharge variation of the iconic Miller experiment was performed with a reducing gas mixture of ammonia, methane, water and hydrogen. Amino acid analysis using liquid chromatography coupled with tandem mass spectrometry after pre-column derivatizaiton revealed the generation of several amino acids including those essential for life. Re-crystallization of the synthetic products and enantiomeric ratio analysis were subsequently performed. Results from liquid chromatography coupled with either fluorescent detector or tandem mass spectrometry after pre-column derivatization with chiral reagent revealed spontaneous and effective asymmetric resolution of serine and alanine. This work describes a useful analytical platform for investigation of hypotheses regarding the origin and homochirality of amino acids under prebiotic conditions. The formation of numerous amino acids in the electric discharge experiment and the occurrence of high enantiomeric ratios of amino acids in re-crystallization experiment give valuable implications for future studies in unraveling fundamental questions regarding origins and evolution of life.

  • 5.
    Massey, M.K.
    et al.
    Durham University, UK.
    Kotsialos, A
    Durham University, UK.
    Volpati, Diogo
    University of São Paulo, Brazil.
    Vissol-Gaudin, E
    Durham University, UK.
    Pearson, C
    Durham University, UK.
    Bowen, L
    Durham University, UK.
    Obara, B
    Durham University, UK.
    Zeze, D.A.
    Durham University, UK.
    Groves, C
    Durham University, UK.
    Petty, M.C.
    Durham University, UK.
    Evolution of Electronic Circuits using Carbon Nanotube Composites2016In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 6, no 32197Article in journal (Refereed)
    Abstract [en]

    volution-in-materio concerns the computer controlled manipulation of material systems using external stimuli to train or evolve the material to perform a useful function. In this paper we demonstrate the evolution of a disordered composite material, using voltages as the external stimuli, into a form where a simple computational problem can be solved. The material consists of single-walled carbon nanotubes suspended in liquid crystal; the nanotubes act as a conductive network, with the liquid crystal providing a host medium to allow the conductive network to reorganise when voltages are applied. We show that the application of electric fields under computer control results in a significant change in the material morphology, favouring the solution to a classification task.

  • 6.
    Olsen, Martin
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Zhang, Renyun
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Örtegren, Jonas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Yang, Ya
    CAS Center for excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Science.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Frequency and voltage response of a wind-driven fluttering triboelectric nanogenerator2019In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 9, no 1, article id 5543Article in journal (Refereed)
    Abstract [en]

    Triboelectric nanogenerators (TENG:s) are used as efficient energy transducers in energy harvesting converting mechanical energy into electrical energy. Wind is an abundant source of mechanical energy but how should a good triboelectric wind harvester be designed? We have built and studied a TENG driven by air flow in a table-top sized wind tunnel. Our TENG constitutes of a plastic film of size10 cm × 2 cm which is fluttering between two copper electrodes generating enough power to light up a battery of LED:s. We measured the voltage and frequency of fluttering at different wind speeds from zero up to 8 m/s for three electrode distances 6 mm, 10 mm and 14 mm. We found that the frequency increases linearly with the wind speed with a cutoff at some low speed. Power was generated already at 1.6 m/s. We seem to be able to explain the observed frequency dependence on wind speed by assuming excitation of the film into different harmonics in response to von Kármán vortices. We also find that the voltage increase linearly with frequency. We anticipate that TENG:s of this design could be useful both as generators and speed sensors because they work at low air speeds.

  • 7.
    Olsen, Martin
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Örtegren, Jonas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Zhang, Renyun
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Reza, Salim
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Schottky model for triboelectric temperature dependence2018In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 8, no 1, article id 5293Article in journal (Refereed)
    Abstract [en]

    The triboelectric effect, charging by contact, is the working principle in a device called a triboelectric nanogenerator. They are used as efficient energy transducers in energy harvesting. In such generators the charging of surfaces at contact is followed by a separation of the surfaces increasing the electrical energy which can subsequently be used. Different materials have different triboelectric potentials leading to charging at contact. The temperature dependence of the charging has just recently been studied: the triboelectric effect is decreasing with temperature for a generator of Al-PTFE-Cu. Here, we suggest a mechanism to explain this effect assuming ion transfer using a two-level Schottky model where the two levels corresponds to the two surfaces. The difference in binding energy for ions on the two surfaces then enters the formula for charging. We fit the triboelectric power density as a function of temperature obtained from a two-level Schottky model to measured data for nanogenerators made of Al-PTFE-Cu found in three references. We obtain an average separation energy corresponding to a temperature of 365 K which is of the right magnitude for physically adsorbed atoms. We anticipate that this model could be used for many types of triboelectric nanogenerators.

  • 8.
    Ström, Kristoffer
    et al.
    Mid Sweden University, Faculty of Human Sciences, Department of Health Sciences. Lund University.
    Morales-Alamo, David
    University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
    Ottosson, Filip
    Lund University.
    Edlund, Anna
    Lund University.
    Hjort, Line
    Copenhagen University Hospital, Copenhagen, Denmark.
    Jörgensen, Sine W.
    Copenhagen University Hospital, Copenhagen, Denmark.
    Almgren, Peter
    Lund University.
    Zhou, Yuedan
    Lund University.
    Martin-Rincon, Marcos
    University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
    Ekman, Carl
    Lund University.
    Pérez-López, Alberto
    University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain; University of Alcalá, Madrid, Spain.
    Ekström, Ola
    Lund University.
    Perez-Suarez, Ismael
    University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
    Mattiasson, Markus
    Lund University.
    De Pablos-Velasco, Pedro
    University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
    Oskolkov, Nikolay
    Lund University.
    Ahlqvist, Emma
    Lund University.
    Wierup, Nils
    Lund University.
    Eliasson, Lena
    Lund University.
    Vaag, Allan
    Copenhagen University Hospital, Copenhagen, Denmark.
    Groop, Leif
    Lund University; Helsinki University, Helsinki, Finland.
    Stenkula, Karin G.
    Lund University.
    Fernandez, Céline
    Lund University.
    Calbet, Jose A. L.
    University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
    Holmberg, Hans-Christer
    Mid Sweden University, Faculty of Human Sciences, Department of Health Sciences.
    Hansson, Ola
    Lund University.
    N1-methylnicotinamide is a signalling molecule produced in skeletal muscle coordinating energy metabolism2018In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 8, no 1, article id 3016Article in journal (Refereed)
    Abstract [en]

    Obesity is a major health problem, and although caloric restriction and exercise are successful strategies to lose adipose tissue in obese individuals, a simultaneous decrease in skeletal muscle mass, negatively effects metabolism and muscle function. To deeper understand molecular events occurring in muscle during weight-loss, we measured the expressional change in human skeletal muscle following a combination of severe caloric restriction and exercise over 4 days in 15 Swedish men. Key metabolic genes were regulated after the intervention, indicating a shift from carbohydrate to fat metabolism. Nicotinamide N-methyltransferase (NNMT) was the most consistently upregulated gene following the energy-deficit exercise. Circulating levels of N1-methylnicotinamide (MNA), the product of NNMT activity, were doubled after the intervention. The fasting-fed state was an important determinant of plasma MNA levels, peaking at ~18 h of fasting and being lowest ~3 h after a meal. In culture, MNA was secreted by isolated human myotubes and stimulated lipolysis directly, with no effect on glucagon or insulin secretion. We propose that MNA is a novel myokine that enhances the utilization of energy stores in response to low muscle energy availability. Future research should focus on applying MNA as a biomarker to identify individuals with metabolic disturbances at an early stage. 

  • 9.
    Vladescu, Alina
    et al.
    National Institute for Optoelectronics, Romania; National Research Tomsk Polytechnic University, Lenin Avenue 43, Tomsk, Russian Federation.
    Vranceanu, Diana
    University Politehnica of Bucharest, Romania.
    Kulesza, Slawek
    Warmia and Mazury University in Olsztyn, Poland.
    Ivanov, Alexey
    Scientific Research Institute of Traumatology, Orthopedics and Neurosurgery, Russia.
    Bramowicz, Mirosław
    Warmia and Mazury University in Olsztyn, Poland.
    Fedonnikov, Alexander
    Scientific Research Institute of Traumatology, Orthopedics and Neurosurgery, Russia.
    Braic, Mariana
    National Institute for Optoelectronics, Romania.
    Norkin, Igor
    Scientific Research Institute of Traumatology, Orthopedics and Neurosurgery, Russia.
    Koptioug, Andrei
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Quality Technology and Management, Mechanical Engineering and Mathematics.
    Kurtukova, Maria O.
    Saratov State Medical University, Russia.
    Dinu, Mihaela
    National Institute for Optoelectronics, Romania.
    Pana, Iulian
    National Institute for Optoelectronics, Romania.
    Surmeneva, Maria
    Tomsk Polytechnic University, Tomsk, Russia.
    Surmenev, Roman A.
    Tomsk Polytechnic University, Tomsk, Russia.
    Cotrut, Cosmin M.
    University Politehnica of Bucharest, Romania; Natl Res Tomsk Polytech Univ, Tomsk, Russia.
    Influence of the electrolyte’s pH on the properties of electrochemically deposited hydroxyapatite coating on additively manufactured Ti64 alloy2017In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 7, no 1, article id 16819Article in journal (Refereed)
    Abstract [en]

    Properties of the hydroxyapatite obtained by electrochemical assisted deposition (ED) are dependenton several factors including deposition temperature, electrolyte pH and concentrations, appliedpotential. All of these factors directly influence the morphology, stoichiometry, crystallinity,electrochemical behaviour, and particularly the coating thickness. Coating structure together withsurface micro- and nano-scale topography significantly influence early stages of the implant biointegration.The aim of this study is to analyse the effect of pH modification on the morphology,corrosion behaviour and in vitro bioactivity and in vivo biocompatibility of hydroxyapatite preparedby ED on the additively manufactured Ti64 samples. The coatings prepared in the electrolytes withpH = 6 have predominantly needle like morphology with the dimensions in the nanometric scale(~30 nm). Samples coated at pH = 6 demonstrated higher protection efficiency against the corrosiveattack as compared to the ones coated at pH = 5 (~93% against 89%). The in vitro bioactivity resultsindicated that both coatings have a greater capacity of biomineralization, compared to the uncoatedTi64. Somehow, the coating deposited at pH = 6 exhibited good corrosion behaviour and highbiomineralization ability. In vivo subcutaneous implantation of the coated samples into the white rats for up to 21 days with following histological studies showed no serious inflammatory process.

  • 10.
    Zhang, Renyun
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Alecrim, Viviane
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Hummelgård, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Andres, Britta
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Forsberg, Sven
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Andersson, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Thermally reduced kaolin-graphene oxide nanocomposites for gas sensing2015In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 5, p. Art. no. 7676-Article in journal (Refereed)
    Abstract [en]

    Highly sensitive graphene-based gas sensors can be made using large-area single layer graphene, but the cost of large-area pure graphene is high, making the simpler reduced graphene oxide (rGO) an attractive alternative. To use rGO for gas sensing, however, require a high active surface area and slightly different approach is needed. Here, we report on a simple method to produce kaolin-graphene oxide (GO) nanocomposites and an application of this nanocomposite as a gas sensor. The nanocomposite was made by binding the GO flakes to kaolin with the help of 3-Aminopropyltriethoxysilane (APTES). The GO flakes in the nanocomposite were contacting neighboring GO flakes as observed by electron microscopy. After thermal annealing, the nanocomposite become conductive as showed by sheet resistance measurements. Based on the conductance changes of the nanocomposite films, electrical gas sensing devices were made for detecting NH3 and HNO3. These devices had a higher sensitivity than thermally annealed multilayer GO films. This kaolin-GO nanocomposite might be useful in applications that require a low-cost material with large conductive surface area including the demonstrated gas sensors.

  • 11.
    Zhang, Renyun
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Andersson, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Andres, Britta
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Edlund, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Edström, Per
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Edvardsson, Sverker
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Forsberg, Sven
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Hummelgård, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Johansson, Niklas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Karlsson, Kristoffer
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Norgren, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Olsen, Martin
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Uesaka, Tetsu
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Öhlund, Thomas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Soap-film coating: High-speed deposition of multilayer nanofilms2013In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 3, p. Art. no. 1477-Article in journal (Refereed)
    Abstract [en]

    The coating of thin films is applied in numerous fields and many methods are employed for the deposition of these films. Some coating techniques may deposit films at high speed; for example, ordinary printing paper is coated with micrometre-thick layers of clay at a speed of tens of meters per second. However, to coat nanometre thin films at high speed, vacuum techniques are typically required, which increases the complexity of the process. Here, we report a simple wet chemical method for the high-speed coating of films with thicknesses at the nanometre level. This soap-film coating technique is based on forcing a substrate through a soap film that contains nanomaterials. Molecules and nanomaterials can be deposited at a thickness ranging from less than a monolayer to several layers at speeds up to meters per second. We believe that the soap-film coating method is potentially important for industrial-scale nanotechnology.

  • 12.
    Zhang, Renyun
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Hummelgård, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Forsberg, Viviane
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Engholm, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Öhlund, Thomas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Olsen, Martin
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Örtegren, Jonas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Photoconductivity of acid exfoliated and flash-light-processed MoS2 films2018In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 8, article id 3296Article in journal (Refereed)
    Abstract [en]

    MoS2 has been studied intensively during recent years as a semiconducting material in several fields, including optoelectronics, for applications such as solar cells and phototransistors. The photoresponse mechanisms of MoS2 have been discussed but are not fully understood, especially the phenomenon in which the photocurrent slowly increases. Here, we report on a study of the photoresponse flash-light-processed MoS2 films of different thicknesses and areas. The photoresponse of such films under different light intensities and bias voltages was measured, showing significant current changes with a quick response followed by a slow one upon exposure to pulsed light. Our in-depth study suggested that the slow response was due to the photothermal effect that heats the MoS2; this hypothesis was supported by the resistivity change at different temperatures. The results obtained from MoS2 films with various thicknesses indicated that the minority-carrier diffusion length was 1.36 mu m. This study explained the mechanism of the slow response of the MoS2 film and determined the effective thickness of MoS2 for a photoresponse to occur. The method used here for fabricating MoS2 films could be used for fabricating optoelectronic devices due to its simplicity.

1 - 12 of 12
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf