miun.sePublications
Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ahmad, Naeem
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Khursheed, Khursheed
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Imran, Muhammad
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Lawal, Najeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Modeling and Verification of a Heterogeneous Sky Surveillance Visual Sensor Network2013In: International Journal of Distributed Sensor Networks, ISSN 1550-1329, E-ISSN 1550-1477, p. Art. id. 490489-Article in journal (Refereed)
    Abstract [en]

    A visual sensor network (VSN) is a distributed system of a large number of camera nodes and has useful applications in many areas. The primary difference between a VSN and an ordinary scalar sensor network is the nature and volume of the information. In contrast to scalar sensor networks, a VSN generates two-dimensional data in the form of images. In this paper, we design a heterogeneous VSN to reduce the implementation cost required for the surveillance of a given area between two altitude limits. The VSN is designed by combining three sub-VSNs, which results in a heterogeneous VSN. Measurements are performed to verify full coverage and minimum achieved object image resolution at the lower and higher altitudes, respectively, for each sub-VSN. Verification of the sub-VSNs also verifies the full coverage of the heterogeneous VSN, between the given altitudes limits. Results show that the heterogeneous VSN is very effective to decrease the implementation cost required for the coverage of a given area. More than 70% decrease in cost is achieved by using a heterogeneous VSN to cover a given area, in comparison to homogeneous VSN. © 2013 Naeem Ahmad et al.

  • 2.
    Dobslaw, Felix
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Computer and System science.
    Tingting, Zhang
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information and Communication systems.
    Gidlund, Mikael
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information and Communication systems.
    Latency Improvement Strategies for Reliability-Aware Scheduling in Industrial Wireless Sensor Networks2015In: International Journal of Distributed Sensor Networks, ISSN 1550-1329, E-ISSN 1550-1477, article id 178368Article in journal (Refereed)
    Abstract [en]

    In this paper, we propose novel strategiesfor end-to-end reliability-aware scheduling in Industrial WirelessSensor Networks (IWSN). Because of stringent reliability requirements inindustrial applications where missed packets may have disastrous or lethalconsequences, all IWSN communication standards are based on TimeDivision Multiple Access (TDMA), allowing for deterministic channel access onthe MAC layer. We therefore extend an existing generic and scalablereliability-aware scheduling approach by name SchedEx. SchedEx has proven toquickly produce TDMA schedules that guarantee auser-defined end-to-end reliability level $\underline\rho$ for all multi-hopcommunication in a WSN. Moreover, SchedEx executes orders of magnitude fasterthan recent algorithms in the literature while producing schedules withcompetitive latencies.We generalize the original problem formulation from single-channel tomulti-channel scheduling and propose a scalable integration into the existingSchedEx approach.We further introduce a novel optimal bound that produces TDMAschedules with latencies around 20\% shorter than the original SchedExalgorithm. Combining the novel strategies with multiple sinks, multiplechannels, and the introduced optimal bound, we could through simulationsverify latency improvements by almost an order of magnitude, reducingthe TDMA super-frame execution times from tens of seconds to seconds only, whichallows for a utilization of SchedEx for many time-critical control applications.

  • 3.
    Imran, Muhammad
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Khursheed, Khursheed
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Ahmad, Naeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Lawal, Najeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Waheed, Malik A.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Complexity Analysis of Vision Functions for Comparison of Wireless Smart Cameras2014In: International Journal of Distributed Sensor Networks, ISSN 1550-1329, E-ISSN 1550-1477, p. Art. no. 710685-Article in journal (Refereed)
    Abstract [en]

    There are a number of challenges caused by the large amount of data and limited resources such as memory, processing capability, energy consumption, and bandwidth, when implementing vision systems on wireless smart cameras using embedded platforms. It is usual for research in this field to focus on the development of a specific solution for a particular problem. There is a requirement for a tool which facilitates the complexity estimation and comparison of wireless smart camera systems in order to develop efficient generic solutions. To develop such a tool, we have presented, in this paper, a complexity model by using a system taxonomy. In this model, we have investigated the arithmetic complexity and memory requirements of vision functions with the help of system taxonomy. To demonstrate the use of the proposed model, a number of actual systems are analyzed in a case study. The complexity model, together with system taxonomy, is used for the complexity estimation of vision functions and for a comparison of vision systems. After comparison, the systems are evaluated for implementation on a single generic architecture. The proposed approach will assist researchers in benchmarking and will assist in proposing efficient generic solutions for the same class of problems with reduced design and development costs.

  • 4.
    Malik, Abdul Waheed
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Thörnberg, Benny
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Imran, Muhammad
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Lawal, Najeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Hardware Architecture for Real-time  Computation of Image Component Feature Descriptors on a FPGA2014In: International Journal of Distributed Sensor Networks, ISSN 1550-1329, E-ISSN 1550-1477, p. Art. no. 815378-Article in journal (Refereed)
    Abstract [en]

    This paper describes a hardwarearchitecture for real-time image component labelingand the computation of image component featuredescriptors. These descriptors are object relatedproperties used to describe each image component.Embedded machine vision systems demand a robustperformance, power efficiency as well as minimumarea utilization, depending on the deployedapplication. In the proposed architecture, the hardwaremodules for component labeling and featurecalculation run in parallel. A CMOS image sensor(MT9V032), operating at a maximum clock frequencyof 27MHz, was used to capture the images. Thearchitecture was synthesized and implemented on aXilinx Spartan-6 FPGA. The developed architecture iscapable of processing 390 video frames per second ofsize 640x480 pixels. Dynamic power consumption is13mW at 86 frames per second.

  • 5.
    Pau, Giovanni
    et al.
    Kore University of Enna, Enna, Italy.
    Ferrero, Renato
    Politecnico di Torino, Italy.
    Jennehag, Ulf
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Systems and Technology.
    Zhang, Haijun
    University of Science and Technology Beijing, China.
    Emerging applications through low-power wireless technologies for Internet of Things2019In: International Journal of Distributed Sensor Networks, ISSN 1550-1329, E-ISSN 1550-1477, Vol. 15, no 3Article in journal (Refereed)
  • 6.
    Yang, Dong
    et al.
    Beijing Jiatong University.
    Xu, Youzhi
    Jönköping University.
    Gidlund, Mikael
    ABB Corporate Research.
    Wireless Coexistence between IEEE 802.11 and IEEE 802.15.4-based Networks: A Survey2011In: International Journal of Distributed Sensor Networks, ISSN 1550-1329, E-ISSN 1550-1477Article in journal (Refereed)
    Abstract [en]

    As more and more wireless devices use the 2.4 GHz radio spectrum, the coexistence of 2.4 GHz wireless devices operating in one place has become a hot topic. With low transmit power, the widely deployed IEEE 802.15.4-based networks are easily interfered with by other 2.4 GHz wireless networks, such as IEEE 802.11. IEEE 802.15.4-based wireless networks have paid great attention to the coexistence between themselves and with other non-IEEE 802.15.4 wireless networks. This problem has been further promoted by two new industry wireless standards, WirelessHART and ISA100, to meet special industry requirements. This paper surveys the studies on the coexistence between IEEE 802.11 and IEEE 802.15.4-based networks following the general analysis method of “question-analysis-solution.” Based on the survey study, we discuss about some open research issues and developments in this field.

  • 7.
    Yu, Kan
    et al.
    Mälardalen University.
    Pang, Zhibo
    ABB Corporate Research, Sweden.
    Gidlund, Mikael
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information and Communication systems.
    Åkerberg, Johan
    ABB Corporate Research, Sweden.
    Björkman, Mats
    Mälardalen University.
    REALFLOW: Reliable Real-Time Flooding-Based Routing Protocol for Industrial Wireless Sensor Networks2014In: International Journal of Distributed Sensor Networks, ISSN 1550-1329, E-ISSN 1550-1477, Vol. 2014, no Article ID 936379, p. 1-17Article in journal (Refereed)
    Abstract [en]

    Wireless technologies have been increasingly applied in industrial automation systems due to flexible installation, mobility, and cost reduction. Unlike traditional wireless sensor networks (WSNs), industrial wireless sensor networks (IWSNs), when expanding from wireless monitoring to wireless control, have more stringent requirements on reliability, real-time performance, and robustness in a number of industrial applications. Successive transmission failures or deadline misses in these applications may severely degrade the control quality and result in serious economic losses and safety problems. Therefore, when deploying IWSNs in harsh industrial environments, to achieve reliable and deterministic end-to-end transmissions is critically important. In this paper, we explain the primary challenges of designing appropriate routing protocols and present a reliable real-time flooding-based routing protocol for IWSNs (REALFLOW). Instead of traditional routing tables, related node lists are generated in a simple distributed manner, serving for packet forwarding. A controlled flooding mechanism is applied to improve both reliability and real-time performance. A seamless transition in the event of topology change can be achieved by REALFLOW. Performance evaluations via simulations verify that significant improvements of reliability, real-time performance, and network recovery time can be achieved by REALFLOW, compared with traditional routing protocols.

1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf