miun.sePublications
Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Eldefrawy, Mohamed
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Systems and Technology.
    Pereira, Nuno
    The Polytechnic of Porto (IPP), Portugal.
    Gidlund, Mikael
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Systems and Technology.
    Key Distribution Protocol for Industrial Internet of Things without Implicit Certificates2019In: IEEE Internet of Things Journal, ISSN 2327-4662, Vol. 6, no 1, p. 906-917Article in journal (Refereed)
    Abstract [en]

    The deployment of the Internet of Things (IoT) in industry, called the Industrial IoT (IIoT), is supporting the introduction of very desirable improvements such as increasing production flexibility, self-organization and real-time and quick response to events. However, security and privacy challenges are still to be well addressed. The IIoT requires different properties to achieve secure and reliable systems and these requirements create extra challenges considering the limited processing and communication power available to IIoT field devices. In this research article, we present a key distribution protocol for IIoT that is computationally and communicationally lightweight (requires a single message exchange) and handles node addition and revocation, as well as fast re-keying. The scheme can also resist the consequences of node capture attacks (we assume that captured nodes can be detected by the Gateway and previous works have shown this assumption to be acceptable in practice), server impersonation attacks and provides forward/backward secrecy. We show formally the correctness of our protocol and evaluate its energy consumption under realistic scenarios using a real embedded platform compared to previous state-of-the-art key-exchange protocols, to show our protocol reliability for IIoT.

  • 2.
    Guntupalli, Lakshmikanth
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Systems and Technology.
    Gidlund, Mikael
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Systems and Technology.
    Li, Frank Y.
    University of Agder, Norway.
    An On-Demand Energy Requesting Scheme for Wireless Energy Harvesting Powered IoT Networks2018In: IEEE Internet of Things Journal, ISSN 2327-4662, Vol. 5, no 4, p. 2868-2879, article id 8390912Article in journal (Refereed)
    Abstract [en]

    Energy harvesting (EH) delivers a unique technique for replenishing batteries in Internet of Things (IoT) devices. Equipped with an energy harvesting accessory, EH-enabled sensor nodes/IoT devices extract energy from ambient resources such as solar or radio frequency (RF) signals. Relying on residual battery or/and harvested energy, sensor nodes in an IoT network perform data exchange activities. Otherwise, the delivery of sensed data would be delayed until sufficient energy is harvested. In this paper, we propose an on-demand energy requesting (OER) mechanism for improving the delay performance of a wireless EH-powered IoT network. The proposed scheme acquires energy when necessary from an energy transmitter that is capable of transmitting energy via directed RF signals. Furthermore we develop two associated discrete time Markov chain (DTMC) models to analyze the performance of the OER scheme, targeting at a generic synchronous medium access control (MAC) protocol. Using the proposed DTMC models, we evaluate OER with respect to average packet delay, network throughput, packet loss probability, and packet reliability ratio by employing a specific synchronous MAC protocol. Numerical results obtained from both analysis and discrete-event simulations coincide with each other, indicating the accuracy of the models and revealing the behavior of EH based packet transmissions.

  • 3.
    Mahmood, Aamir
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Systems and Technology.
    Hossain, M. M. Aftab
    KTH Royal Institute of Technology, Sweden.
    Cavdar, Cicek
    KTH Royal Institute of Technology, Sweden.
    Gidlund, Mikael
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Systems and Technology.
    Energy-Reliability Aware Link Optimization for Battery-Powered IoT Devices with Non-Ideal Power Amplifiers2019In: IEEE Internet of Things Journal, ISSN 2327-4662, Vol. 6, no 3, p. 5058-5067, article id 8625460Article in journal (Refereed)
    Abstract [en]

    In this paper, we study cross-layer optimization of low-power wireless links for reliability-aware applications while considering both the constraints and the non-ideal characteristics of the hardware in Internet-of-things (IoT) devices. Specifically, we define an energy consumption (EC) model that captures the energy cost—of transceiver circuitry, power amplifier, packet error statistics, packet overhead, etc.—in delivering a useful data bit. We derive the EC models for an ideal and two realistic non-linear power amplifier models. To incorporate packet error statistics, we develop a simple, in the form of elementary functions, and accurate closed-form packet error rate (PER) approximation in Rayleigh block-fading. Using the EC models, we derive energy optimal yet reliability and hardware compliant conditions for limiting unconstrained optimal signal-to-noise ratio (SNR), and payload size. Together with these conditions, we develop a semi-analytic algorithm for resource-constrained IoT devices to jointly optimize parameters on physical (modulation size, SNR) and medium access control (payload size and the number of retransmissions) layers in relation to link distance. Our results show that despite reliability constraints, the common notion—higher-order M-ary modulations (MQAM) are energy optimal for short-range communication—prevails, and can provide up to 180% lifetime extension as compared to often used OQPSK modulation in IoT devices. However, the reliability constraints reduce both their range and the energy efficiency, while non-ideal traditional PA reduces the range further by 50% and diminishes the energy gains unless a better PA is used.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf