miun.sePublications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Xu, Ye
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Bader, Sebastian
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Oelmann, Bengt
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Design, modeling and optimization of an m-shaped variable reluctance energy harvester for rotating applications2019In: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 195, p. 1280-1294Article in journal (Refereed)
    Abstract [en]

    The variable reluctance principle can be used to convert rotational kinetic energy into electrical energy, creating a Variable Reluctance Energy Harvester (VREH) based on electromagnetic induction. This can be used to implement self-sustaining wireless sensors in rotating applications. In this paper, we present and investigate a novel design of a VREH with high volumetric power density that targets low-speed rotating applications. The design uses an m-shaped pole-piece and two opposing magnets. We theoretically analyze key design parameters that influence the VREH’s output power, and relate these parameters to geometrical design factors of the proposed structure. Key design factors include the coil height, the permanent magnet height and the tooth height. A method based on numerical simulations is introduced, enabling to determine the optimal geometrical dimensions of the proposed structure under given size-constraints. The results demonstrate that the method leads to optimal structure configurations, which has been evaluated for different cases and is verified experimentally. Good agreement between numerical simulations and experiments are reported with deviations in output power estimation below 3%. The optimized m-shaped VREH, moreover, provides output power levels sufficient for wireless sensor operation, even in low-speed rotating applications.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf