miun.sePublications
Change search
Refine search result
1 - 40 of 40
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ahmad, Naeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Modelling and optimization of sky surveillance visual sensor network2012Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    A Visual Sensor Network (VSN) is a distributed system of a largenumber of camera sensor nodes. The main components of a camera sensornode are image sensor, embedded processor, wireless transceiver and energysupply. The major difference between a VSN and an ordinary sensor networkis that a VSN generates two dimensional data in the form of an image, whichcan be exploited in many useful applications. Some of the potentialapplication examples of VSNs include environment monitoring, surveillance,structural monitoring, traffic monitoring, and industrial automation.However, the VSNs also raise new challenges. They generate large amount ofdata which require higher processing powers, large bandwidth requirementsand more energy resources but the main constraint is that the VSN nodes arelimited in these resources.This research focuses on the development of a VSN model to track thelarge birds such as Golden Eagle in the sky. The model explores a number ofcamera sensors along with optics such as lens of suitable focal length whichensures a minimum required resolution of a bird, flying at the highestaltitude. The combination of a camera sensor and a lens formulate amonitoring node. The camera node model is used to optimize the placementof the nodes for full coverage of a given area above a required lower altitude.The model also presents the solution to minimize the cost (number of sensornodes) to fully cover a given area between the two required extremes, higherand lower altitudes, in terms of camera sensor, lens focal length, camera nodeplacement and actual number of nodes for sky surveillance.The area covered by a VSN can be increased by increasing the highermonitoring altitude and/or decreasing the lower monitoring altitude.However, it also increases the cost of the VSN. The desirable objective is toincrease the covered area but decrease the cost. This objective is achieved byusing optimization techniques to design a heterogeneous VSN. The core ideais to divide a given monitoring range of altitudes into a number of sub-rangesof altitudes. The sub-ranges of monitoring altitudes are covered by individualsub VSNs, the VSN1 covers the lower sub-range of altitudes, the VSN2 coversthe next higher sub-range of altitudes and so on, such that a minimum cost isused to monitor a given area.To verify the concepts, developed to design the VSN model, and theoptimization techniques to decrease the VSN cost, the measurements areperformed with actual cameras and optics. The laptop machines are used withthe camera nodes as data storage and analysis platforms. The area coverage ismeasured at the desired lower altitude limits of homogeneous as well asheterogeneous VSNs and verified for 100% coverage. Similarly, the minimumresolution is measured at the desired higher altitude limits of homogeneous aswell as heterogeneous VSNs to ensure that the models are able to track thebird at these highest altitudes.

  • 2.
    Ahmad, Naeem
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Imran, Muhammad
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Khursheed, Khursheed
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Lawal, Najeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Model, placement optimization and verification of a sky surveillance visual sensor network2013In: International Journal of Space-Based and Situated Computing (IJSSC), ISSN 2044-4893, E-ISSN 2044-4907, Vol. 3, no 3, p. 125-135Article in journal (Refereed)
    Abstract [en]

    A visual sensor network (VSN) is a distributed system of a large number of camera nodes, which generates two dimensional data. This paper presents a model of a VSN to track large birds, such as golden eagle, in the sky. The model optimises the placement of camera nodes in VSN. A camera node is modelled as a function of lens focal length and camera sensor. The VSN provides full coverage between two altitude limits. The model can be used to minimise the number of sensor nodes for any given camera sensor, by exploring the focal lengths that fulfils both the full coverage and minimum object size requirement. For the case of large bird surveillance, 100% coverage is achieved for relevant altitudes using 20 camera nodes per km² for the investigated camera sensors. A real VSN is designed and measurements of VSN parameters are performed. The results obtained verify the VSN model.

  • 3.
    Ahmad, Naeem
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Khursheed, Khursheed
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Imran, Muhammad
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Lawal, Najeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Cost Optimization of a Sky Surveillance Visual Sensor Network2012In: Proceedings of SPIE - The International Society for Optical Engineering, Belgium: SPIE - International Society for Optical Engineering, 2012, p. Art. no. 84370U-Conference paper (Refereed)
    Abstract [en]

    A Visual Sensor Network (VSN) is a network of spatially distributed cameras. The primary difference between VSN and other type of sensor network is the nature and volume of information. A VSN generally consists of cameras, communication, storage and central computer, where image data from multiple cameras is processed and fused. In this paper, we use optimization techniques to reduce the cost as derived by a model of a VSN to track large birds, such as Golden Eagle, in the sky. The core idea is to divide a given monitoring range of altitudes into a number of sub-ranges of altitudes. The sub-ranges of altitudes are monitored by individual VSNs, VSN1 monitors lower range, VSN2 monitors next higher and so on, such that a minimum cost is used to monitor a given area. The VSNs may use similar or different types of cameras but different optical components, thus, forming a heterogeneous network.  We have calculated the cost required to cover a given area by considering an altitudes range as single element and also by dividing it into sub-ranges. To cover a given area with given altitudes range, with a single VSN requires 694 camera nodes in comparison to dividing this range into sub-ranges of altitudes, which requires only 96 nodes, which is 86% reduction in the cost.

  • 4.
    Ahmad, Naeem
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Khursheed, Khursheed
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Imran, Muhammad
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Lawal, Najeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Modeling and Verification of a Heterogeneous Sky Surveillance Visual Sensor Network2013In: International Journal of Distributed Sensor Networks, ISSN 1550-1329, E-ISSN 1550-1477, p. Art. id. 490489-Article in journal (Refereed)
    Abstract [en]

    A visual sensor network (VSN) is a distributed system of a large number of camera nodes and has useful applications in many areas. The primary difference between a VSN and an ordinary scalar sensor network is the nature and volume of the information. In contrast to scalar sensor networks, a VSN generates two-dimensional data in the form of images. In this paper, we design a heterogeneous VSN to reduce the implementation cost required for the surveillance of a given area between two altitude limits. The VSN is designed by combining three sub-VSNs, which results in a heterogeneous VSN. Measurements are performed to verify full coverage and minimum achieved object image resolution at the lower and higher altitudes, respectively, for each sub-VSN. Verification of the sub-VSNs also verifies the full coverage of the heterogeneous VSN, between the given altitudes limits. Results show that the heterogeneous VSN is very effective to decrease the implementation cost required for the coverage of a given area. More than 70% decrease in cost is achieved by using a heterogeneous VSN to cover a given area, in comparison to homogeneous VSN. © 2013 Naeem Ahmad et al.

  • 5.
    Ahmad, Naeem
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Lawal, Najeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Oelmann, Bengt
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Imran, Muhammad
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Khursheed, Khursheed
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Model and placement optimization of a sky surveillance visual sensor network2011In: Proceedings - 2011 International Conference on Broadband and Wireless Computing, Communication and Applications, BWCCA 2011, IEEE Computer Society, 2011, p. 357-362Conference paper (Refereed)
    Abstract [en]

    Visual Sensor Networks (VSNs) are networks which generate two dimensional data. The major difference between VSN and ordinary sensor network is the large amount of data. In VSN, a large number of camera nodes form a distributed system which can be deployed in many potential applications. In this paper we present a model of the physical parameters of a visual sensor network to track large birds, such as Golden Eagle, in the sky. The developed model is used to optimize the placement of the camera nodes in the VSN. A camera node is modeled as a function of its field of view, which is derived by the combination of the lens focal length and camera sensor. From the field of view and resolution of the sensor, a model for full coverage between two altitude limits has been developed. We show that the model can be used to minimize the number of sensor nodes for any given camera sensor, by exploring the focal lengths that both give full coverage and meet the minimum object size requirement. For the case of large bird surveillance we achieve 100% coverage for relevant altitudes using 20 camera nodes per km2 for the investigated camera sensors.

  • 6.
    Alam, Mohammad Anzar
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Thim, Jan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Manuilskiy, Anatoliy
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Westerlind, Christina
    SCA R&D Centre, Sundsvall, Sweden.
    Lindgren, Johan
    Iggesund Paperboard AB, Iggesund, Sweden.
    Lidén, Joar
    SCA Ortviken AB, Sundsvall, Sweden.
    Investigation of the surface topographical differences between the Cross Direction and the Machine Direction for newspaper and paperboard2011In: Nordic Pulp & Paper Research Journal, ISSN 0283-2631, E-ISSN 2000-0669, Vol. 26, no 4, p. 468-475Article in journal (Refereed)
    Abstract [en]

    Paper and paperboard surface quality is constantly being improved by the industry. This improvement work deals with the essential fact that the surface topography must be measured, both in relation to offline and online measurements for the manufactured products. Most measurements relating to surface topography (especially online) are performed either in the machine direction (MD) or in the cross direction (CD). It has been the opinion of SCA Ortviken AB and Iggesund Paperboard AB that the surface topography amplitudes are almost always higher in the CD than in the MD, for their products which consist of newspaper and paperboard. This article aims to investigate the rela-tionship between the CD and the MD surface topography amplitudes for a wide range of spatial wavelength for both newspaper and paperboard. The tests and investiga-tions have been conducted using an FRT Microprof profilometer within the range 20 μm up to 8 mm, and the results confirm that the surface topography amplitudes are higher in the CD for most of the shorter spatial wavelength within this range. The results also show significant differences between measurements for different paper qualities, suggesting a requirement to investigate the relationship between the CD and the MD topography for all paper and paperboard qualities of interest for a paper or paperboard mill, before a decision is made in relation to a measurement method.

  • 7.
    Andersson, Karl
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Intelligent control system for street lighting2016Independent thesis Advanced level (professional degree), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Street lighting is an important aspect of infrastructure in terms of both safety and comfort, but it also consumes a lot of energy. Unused light is a waste of energy, and without any form of control of the street lighting, this problem will continue to increase along with the expansion of road networks. The aim of this thesis is to propose an intelligent control system for street lighting that can adapt to the velocity of individual road users, to investigate if this could provide ways to improve the efficiency of street lighting. Previous control approaches include systems based on ambient light intensity or presence of road users, but no studies were found in which illumination adapts to the velocity of road users. The project involves three main steps, including a literature review, a system implementation and evaluation. In the proposed system, street lights cooperate to detect road users and calculate their velocities in order to adapt the illumination and make it follow their movement. It can be concluded from the evaluation results that the velocity readings help further optimize the illumination control in comparison to systems that do not consider velocity. The velocity readings make it possible to only illuminate the roadway in the direction of travel, while also adapting the distance of illumination to the recorded speed. The proposed control scheme is considered a viable solution for reducing the amount of unused light, consequently reducing the energy consumption of street lighting.

  • 8.
    Aurangzeb, Khursheed
    et al.
    Computer Engineering Department, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia.
    Alhussein, Musaed
    Computer Engineering Department, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Data Reduction Using Change Coding for Remote Applications of wireless Visual Sensor Networks2018In: IEEE Access, E-ISSN 2169-3536, Vol. 6, p. 37738-37747Article in journal (Refereed)
    Abstract [en]

    The data reduction capability of image compression schemes is limited by the underlying compression technique. For applications with minor changes between consecutive frames, change coding can be used to further reduce the data. We explored the efficiency of change coding for data reduction in a wireless visual sensor network (WVSN). This paper presents an analysis of the compression efficiency of change coding for a variety of changes, such as different shapes, sizes, and locations of white objects in adjacent sets of frames. Compressing change frame provides a better performance compared with compressing the original frames for up to 95% changes in the number of objects in adjacent frames. Due to illumination noise, the size of the objects increases at its boundaries, which negatively affects the performance of change coding. We experimentally proved that the negative impact of illumination noise could be reduced by applying morphology on the change frame. Communication energy consumption of the VSN is dependent on the data that are transmitted to the server. Our results show that the communication energy consumption of the VSN can be reduced by 27%, 29%, and 46% by applying change coding in combination with JBIG2, Group4, and Gzip_pack, respectively. The findings presented in this paper will aid researchers in enhancing the compression potential of image coding schemes in the energy-constrained applications of WVSNs.

  • 9.
    Bader, Sebastian
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Anneken, Mathias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Goldbeck, Manuel
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Oelmann, Bengt
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    SAQnet: Experiences from the Design of an Air Pollution Monitoring System Based on Off-the-Shelf Equipment2011In: Proceedings of the 2011 7th International Conference on Intelligent Sensors, Sensor Networks and Information Processing, ISSNIP 2011, IEEE conference proceedings, 2011, p. 223-228Conference paper (Refereed)
    Abstract [en]

    Nowadays, air pollution is monitored with accurate, but large-sized measurement stations, leading to an overall limited number of monitored locations. Combining these stations, with a higher number of less accurate stations can provide additional information, such as with regards to pollutant distributions. In this paper we present the design, implementation and initial results of such stations based on Wireless Sensor Network technology. For the implementation of the network purely off-the-shelf equipment was chosen, which allows us to analyze the current status of commercially available Wireless Sensor Network technology. While the system was fully implemented and demonstrated operationally, the experiences found during the project showed a limited matureness with regards to the off-the-shelf equipment and uncovered flaws in typical assumptions underlying Wireless Sensor Network research. © 2011 IEEE.

  • 10.
    Bader, Sebastian
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Ma, Xinyu
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Oelmann, Bengt
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    On the Modeling of Solar-Powered Wireless Sensor Nodes2014In: Journal of Sensor and Actuator Networks, ISSN 2224-2708, Vol. 3, no 3, p. 207-223Article in journal (Refereed)
    Abstract [en]

    Solar energy harvesting allows for wireless sensor networks to be operated over extended periods of time. In order to select an appropriate harvesting architecture and dimension for its components, an effective method for the comparison of system implementations is required. System simulations have the capability to accomplish this in an accurate and efficient manner. In this paper, we evaluate the existing work on solar energy harvesting architectures and common methods for their modeling. An analysis of the existing approaches demonstrates a mismatch between the requirement of the task to be both accurate and efficient and the proposed modeling methods, which are either accurate or efficient. As a result, we propose a data-driven modeling method based on artificial neural networks for further evaluation by the research community. Preliminary results of an initial investigation demonstrate the capability of this method to accurately capture the behavior of a solar energy harvesting architecture, while providing a time-efficient model generation procedure based on system-level data.

  • 11.
    Bejugam, Santosh
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Tremor quantification and parameter extraction2011Independent thesis Advanced level (degree of Master (Two Years)), 80 credits / 120 HE creditsStudent thesis
    Abstract [en]

    Tremor is a neuro degenerative disease causing involuntary musclemovements in human limbs. There are many types of tremor that arecaused due to the damage of nerve cells that surrounds thalamus of thefront brain chamber. It is hard to distinguish or classify the tremors asthere are many reasons behind the formation of specific category, soevery tremor type is named behind its frequency type. Propermedication for the cure by physician is possible only when the disease isidentified.Because of the argument given in the above paragraph, there is a needof a device or a technique to analyze the tremor and for extracting theparameters associated with the signal. These extracted parameters canbe used to classify the tremor for onward identification of the disease.There are various diagnostic and treatment monitoring equipment areavailable for many neuromuscular diseases. This thesis is concernedwith the tremor analysis for the purpose of recognizing certain otherneurological disorders. A recording and analysis system for human’stremor is developed.The analysis was performed based on frequency and amplitudeparameters of the tremor. The Fast Fourier Transform (FFT) and higherorderspectra were used to extract frequency parameters (e.g., peakamplitude, fundamental frequency of tremor, etc). In order to diagnosesubjects’ condition, classification was implemented by statisticalsignificant tests (t‐test).

  • 12.
    Cheng, Peng
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Sobh, Mohamed
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Oelmann, Bengt
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Contactless Rotor RPM Measurement Using Laser Mouse Sensors2012In: IEEE Transactions on Instrumentation and Measurement, ISSN 0018-9456, E-ISSN 1557-9662, Vol. 61, no 3, p. 740-748Article in journal (Refereed)
    Abstract [en]

    This paper presents an experimental study using laser mouse sensors for the contactless revolutions per minute (RPM) measurement of a rotating shaft. The sensor performance characterization experiment is firstly conducted under different parameter setups. After the optimal parameter value has been found, the rotor RPM experiment is then conducted with a speed sweep from 500 to 3800 rpm, and data are gathered at 30 different speeds and processed using two different methods to convert the sensor readings into the RPM of the rotating shaft; the results are then displayed. The performance differences between the two methods are compared, and the observation is that both the linearity and the signal-to-noise ratio of the frequency correlation method are several times better than those for the amplitude correlation method. The conclusion summarizes the experimental results and the advantage associated with this new RPM sensing method and provides the motivation for its potential applications and its future works.

  • 13.
    Cheng, Peng
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Yang, Yan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Oelmann, Bengt
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Design and Implementation of a Stator-Free RPM Sensor Prototype Based on MEMS Accelerometers2012In: IEEE Transactions on Instrumentation and Measurement, ISSN 0018-9456, E-ISSN 1557-9662, Vol. 61, no 3, p. 775-785Article in journal (Refereed)
    Abstract [en]

    This paper presents the design and implementation of a prototype of a stator-free revolutions-per-minute (RPM) sensor based on two microelectromechanical-system uniaxial accelerometers. This paper first introduces the operating principle of the stator-free RPM sensor. It then discusses the associated architecture and design issues of this new sensing method. It then describes the detail of the prototype sensor hardware and software design of the common-mode rejection method and its signal processing. Experiments using the prototype sensor have been also conducted to further verify and strengthen the arguments put forward in the previous discussion. All experiments in this paper took place on a lathe machine in a laboratory. Sensor calibration under a MATLAB environment is also described. Experimental results confirm the interesting property of this sensor, namely, that it provides higher precision at higher RPM. The conclusion summarizes the design considerations, the experimental results, and the motivation in relation to future works for this stator-free RPM sensing method.

  • 14.
    Fabre, Arthur
    et al.
    Electronics and Computer Science University of Southampton, UK.
    Martinez, Kirk
    Electronics and Computer Science University of Southampton, UK.
    Bragg, Graeme
    Electronics and Computer Science University of Southampton, UK.
    Basford, Philip
    Electronics and Computer Science University of Southampton, UK.
    Hart, Jane
    Geography and Environment University of Southampton, UK.
    Bader, Sebastian
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Bragg, Olivia
    Environment University of Dundee, UK.
    Deploying a 6LoWPAN, CoAP, low power, wireless sensor network: Poster Abstract2016In: Proceedings of the 14th ACM Conference on Embedded Network Sensor Systems CD-ROM, 2016, p. 362-363Conference paper (Refereed)
    Abstract [en]

    In order to integrate equipment from different vendors, wireless sensor networks need to become more standardized. Using IP as the basis of low power radio networks, together with application layer standards designed for this purpose is one way forward. This research focuses on implementing and deploying a system using Contiki, 6LoWPAN over an 868 MHz radio network, together with CoAP as a standard application layer protocol. A system was deployed in the Cairngorm mountains in Scotland as an environmental sensor network, measuring streams, temperature profiles in peat and periglacial features. It was found that RPL provided an effective routing algorithm, and that the use of UDP packets with CoAP proved to be an energy efficient application layer. This combination of technologies can be very effective in large area sensor networks.

  • 15.
    Gao, Jinlan
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Sidén, Johan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    An Analytical Model for Electro-magnetically Coupled UHF RFID Sensor Tags2013In: 2013 IEEE INTERNATIONAL CONFERENCE ON RFID (RFID), IEEE conference proceedings, 2013, p. 66-73Conference paper (Refereed)
    Abstract [en]

    This paper presents an analytical model for electromagnetically coupled UHF RFID sensor tags where a coupling loop with an embedded sensor is attached to an ordinary UHF RFID tag with a small gap. Electromagnetic coupling is used, in this case, to modulate the properties of the tag antenna in proportion to the values of the embedded sensor. The antenna together with the coupling loop are represented as an equivalent circuit and the analysis of the sensor tag becomes a circuit-level calculation after extracting parameters from full-wave simulations for, respectively, the separated dipole antenna and coupling loop. The results calculated from the equivalent circuit model are compared with the results from full-wave simulations and show good agreement. The presented model can thus be used for analyzing and predicting the behavior of electromagnetically coupled sensor tags. Based on the analysis with the presented model, the methods for optimizing the sensory performance of this kind of RFID sensor tags are also presented in this paper.

  • 16.
    Gao, Jinlan
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Sidén, Johan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Nilsson, Hans-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Characterization of UHF RFID Sensor Tags with Electromagnetically Coupled Passive Sensors2013In: Proceeding of European Conference on Smart Objects, Systems and Technologies (Smart-SysTech 2013), 2013, p. 1-7Conference paper (Refereed)
  • 17.
    Gebre, Tamrat Gebremedhin
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Automatic recognition of tree trunks in images: Robotics in forest industry2014Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
  • 18.
    Hörschmeyer, Felix
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Development of a wireless sensor system for the characterization of energy harvesting conditions2016Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    This report deals with the development of a wireless sensor system that measures the environmental energy and predicts if energy harvesting could be possible in different areas. It provides an overview over the hardware used to build this system and gives a detailed description of the software implementation of the system. The hardware part presents the microcontroller and platform that is used, as well as the sensors integrated in the system. The software part explains how the used hardware was put together in a program that controls the different components. It explains the possibility to save captured sensor values on an SD card or send them to a remote receiver with an XBee radio module in real time. Also the inclusion of the mbed software library, which provides a lot of useful applications and functions for the project, is an important part. The final part of the report presents the results, showing how the system works.

  • 19.
    Imran, Muhammad
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Munir, Huma
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Thörnberg, Benny
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Low complexity FPGA based background subtraction technique for thermal imagery2015In: ACM International Conference Proceeding Series, Association for Computing Machinery (ACM), 2015, p. 1-6Conference paper (Refereed)
    Abstract [en]

    Embedded smart camera systems are gaining popularity for a number of real world surveillance applications. However, there are still challenges, i.e. variation in illumination, shadows, occlusion, and weather conditions while employing the vision algorithms in outdoor environments. For safety-critical surveillance applications, the visual sensors can be complemented with beyond-visual-range sensors. This in turn requires analysis, development and modification of existing imaging techniques. In this work, a low complexity background modelling and subtraction technique has been proposed for thermal imagery. The proposed technique has been implemented on Field Programmable Gate Arrays (FPGAs) after in-depth analysis of different sets of images, characterizing poor signal-to-noise ratio challenges, e.g. motion of high frequency background objects, temperature variation and camera jitter etc. The proposed technique dynamically updates the background on pixel level and requires a single frame storage as opposed to existing techniques. The comparison of this approach with two other approaches show that this approach performs better in different environmental conditions. The proposed technique has been modelled in Register Transfer Logic (RTL) and implementation on the latest FPGAs shows that the design requires less than 1 percent logics, 47 percent block RAMs, and consumes 91 mW power consumption on Artix-7 100T FPGA.

  • 20.
    Khursheed, Khursheed
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Imran, Muhammad
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Ahmad, Naeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Bi-Level Video Codec for Machine Vision Embedded Applications2013In: Elektronika Ir Elektrotechnika, ISSN 1392-1215, Vol. 19, no 8, p. 93-96Article in journal (Refereed)
    Abstract [en]

    Wireless Visual Sensor Networks (WVSN) are feasible today due to the advancement in many fields of electronics such as Complementary Metal Oxide Semiconductor (CMOS) cameras, low power electronics, distributed computing and radio transceivers. The energy budget in WVSN is limited due to the small form factor of the Visual Sensor Nodes (VSNs) and the wireless nature of the application. The images captured by VSN contain huge amount of data which leads to high communication energy consumptions. Hence there is a need for designing efficient algorithms which are computationally less complex and provide high compression ratio. The change coding and Region of Interest (ROIs) coding are the options for data reduction of the VSN. But, for higher number of objects in the images, the compression efficiency of both the change coding and ROI coding becomes worse than that of image coding. This paper explores the compression efficiency of the Bi-Level Video Codec (BVC) for several representative machine vision applications. We proposed to implement image coding, change coding and ROI coding at the VSN and to select the smallest bit stream among the three. Results show that the compression performance of the BVC for such applications is always better than that of change coding and ROI coding.

  • 21.
    Khursheed, Khursheed
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Imran, Muhammad
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Ahmad, Naeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Efficient Data Reduction Techniques for Remote Applications of a Wireless Visual Sensor Network2013In: International Journal of Advanced Robotic Systems, ISSN 1729-8806, E-ISSN 1729-8814, Vol. 10, p. Art. no. 240-Article in journal (Refereed)
    Abstract [en]

    A Wireless Visual Sensor Network (WVSN) is formed by deploying many Visual Sensor Nodes (VSNs) in the field. After acquiring an image of the area of interest, the VSN performs local processing on it and transmits the result using an embedded wireless transceiver. Wireless data transmission consumes a great deal of energy, where energy consumption is mainly dependent on the amount of information being transmitted. The image captured by the VSN contains a huge amount of data. For certain applications, segmentation can be performed on the captured images. The amount of information in the segmented images can be reduced by applying efficient bi-level image compression methods. In this way, the communication energy consumption of each of the VSNs can be reduced. However, the data reduction capability of bi-level image compression standards is fixed and is limited by the used compression algorithm. For applications attributing few changes in adjacent frames, change coding can be applied for further data reduction. Detecting and compressing only the Regions of Interest (ROIs) in the change frame is another possibility for further data reduction. In a communication system, where both the sender and the receiver know the employed compression standard, there is a possibility for further data reduction by not including the header information in the compressed bit stream of the sender. This paper summarizes different information reduction techniques such as image coding, change coding and ROI coding. The main contribution is the investigation of the combined effect of all these coding methods and their application to a few representative real life applications. This paper is intended to be a resource for researchers interested in techniques for information reduction in energy constrained embedded applications.

  • 22.
    Krug, Silvia
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    IoT Communication Introduced Limitations for High Sampling Rate Applications2018In: GI/ITG KuVS Fachgespräch Sensornetze 13. & 14. September 2018, Braunschweig : Technical Report, 2018Conference paper (Refereed)
    Abstract [en]

    Networking solutions for the Internet of Things aretypically designed for applications that require low data rates andfeature rare transmission events. The initial assumption leads to asystem design towards minimal data transfers and packet sizes.However, this can become a challenge, if applications requiredifferent traffic patterns or cooperative interaction betweendevices. Applications requiring a high sampling rate to capturethe desired phenomenon produce larger amounts of data thatneed to be transported. In this paper, we present a studyhighlighting some of the challenging aspects for such applicationsand how the choice of communication technology can limit bothapplication behavior and network structure.

  • 23.
    Lindholm, Viktor
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    High voltage transient protection for automotive2019Independent thesis Advanced level (professional degree), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Electronics for automotive needs to be able to handle different situations that can occur on the power line, such as high voltage transients. ISO16750 and ISO-7637 describes different pulses and tests a system needs to be able to handle. This report compares three different protection circuits that can output +5V and +12V built for low power devices. The circuits use different techniques for protection, one that uses TVS diodes, another that uses a voltage regulator IC with built in protection. The last protection uses P-channel MOSFET’s for protection. The circuits are compared against protection, price and leakage current. The most relevant transients to test a system against are decided to be pulse1, pulse 2a and load dump. A pulse generator consisting of a pulse shaping network and a common drain amplifier is used to create the test pulses. The result shows that all the circuits could protect against pulse 2a and load dump. However, all the circuits did fail against pulse 1 due to an undersized diode for negative voltage protection. The leakage current did not exceed 4µA for two of the circuits in the temperature interval of -40°C to +100°C. All the circuits started to have high leakage current when the temperature got up to +150°C. The price for the circuits didn’t differ that much, all the circuits cost below 3 US-dollar per circuit when making 10 000 circuits. The conclusions that could be made of the results are that all the circuits could protect against pulse 1, pulse 2a and load dump if correct diode is used for negative voltage protection. The protection that builds on Pchannel MOSFET’s should be the best choice for low power devices due to its low leakage current and potential for low cost. The disadvantage is the complexity and number of components needed for the circuit. The TVS diodes should be used if low complexity and low number of components is preferred. The disadvantage is that TVS diodes gets hot if a load dump is applied and the interval between stand-off voltage and maximum clamping voltage is quite high. The study also shows that there are cheaper solutions than using TVS diodes.

  • 24.
    Ma, Xinyu
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Bader, Sebastian
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Oelmann, Bengt
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Solar panel modelling for low illuminance indoor conditions2016In: 2016 2ND IEEE NORDIC CIRCUITS AND SYSTEMS CONFERENCE (NORCAS), IEEE, 2016, article id 7792891Conference paper (Refereed)
    Abstract [en]

    In the energy harvesting domain, the modelling of a solar panel plays an important role in predicting the energy availability of energy harvesting system applications. Indoor environments, which are illuminated by artificial light sources, have typically much lower illumination levels than outdoor environments. In this paper, we compare the behaviour of different types of models under low illuminance conditions, in order to investigate sufficient modelling approaches for indoor environments. Previous work has shown that equivalent circuit modelling may have reduced performance under low illuminance conditions. Instead, we investigate behavioural models and compare their results with the equivalent circuit model. Two different types of behavioural models have been tested, namely artificial neural network models and polynomial curve fitting models. The comparison of these three models has shown that it is not possible to establish which of the modelling methods performs best, because each of them have strong points and shortcomings making the ideal choice application dependant.

  • 25.
    Malik, Abdul Waheed
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Thörnberg, Benny
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Imran, Muhammad
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Lawal, Najeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Hardware Architecture for Real-time  Computation of Image Component Feature Descriptors on a FPGA2014In: International Journal of Distributed Sensor Networks, ISSN 1550-1329, E-ISSN 1550-1477, p. Art. no. 815378-Article in journal (Refereed)
    Abstract [en]

    This paper describes a hardwarearchitecture for real-time image component labelingand the computation of image component featuredescriptors. These descriptors are object relatedproperties used to describe each image component.Embedded machine vision systems demand a robustperformance, power efficiency as well as minimumarea utilization, depending on the deployedapplication. In the proposed architecture, the hardwaremodules for component labeling and featurecalculation run in parallel. A CMOS image sensor(MT9V032), operating at a maximum clock frequencyof 27MHz, was used to capture the images. Thearchitecture was synthesized and implemented on aXilinx Spartan-6 FPGA. The developed architecture iscapable of processing 390 video frames per second ofsize 640x480 pixels. Dynamic power consumption is13mW at 86 frames per second.

  • 26.
    Meng, Xiaozhou
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Maintenance Consideration for Long Life Cycle Embedded System2012Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

         In this thesis, the work presented is in relation to consideration to the maintenance of a long life cycle embedded system. Various issues can present problems for maintaining a long life cycle embedded system, such as component obsolescence and IP (intellectual property) portability.      For products including automotive, avionics, military application etc., the desired life cycles for these systems are many times longer than the obsolescence cycle for the electronic components used in the systems. The maintainability is analyzed in relation to long life cycle embedded systems for different design technologies. FPGA platform solutions are proposed in order to ease the system maintenance. Different platform cases are evaluated by analyzing the essence of each case and the consequences of different risk scenarios during system maintenance. This has shown that an FPGA platform with a vendor and device independent soft IP has the highest maintainability.A mathematic model of obsolescence management for long life cycle embedded system maintenance is presented. This model can estimate the minimum management costs for the different system architecture and this consists of two parts. The first is to generate a graph in Matlab which is in the form of state transfer diagram. A segments table is then output from Matlab for further optimization. The second part is to find the lowest cost in the state transfer diagram, which can be viewed as a transshipment problem. Linear programming is used to calculate the minimized management cost and schedule, which is solved by Lingo. A simple Controller Area Network (CAN) controller system case study is shown in order to apply this model. The model is validated by a set of synthetic and experimentally selected values. The results provided by this are a minimized management cost and an optimized management time schedule. Test experiments of the maintenance cost responding to the interest rate and unit cost are implemented. The responses from the experiments meet our expectations.      The reuse of predefined IP can shorten development times and assist the designer to meet time-to-market (TTM) requirements. System migration between devices is unavoidable, especially when it has a long life cycle expectation, so IP portability becomes an important issue for system maintenance. An M-JPEG decoder case study is presented in the thesis. The lack of any clear separation between computation and communication is shown to limit the IP’s portability with respect to different communication interfaces. A methodology is proposed to ease the interface modification and interface reuse, thus to increase the portability of an IP. Technology and tool dependent firmware IP components are also shown to limit the IP portability with respect to development tools and FPGA vendors.

  • 27.
    Meng, Xiaozhou
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Haoming, Zeng
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Lawal, Najeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Thörnberg, Benny
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Portability Analysis of Soft Microprocessor for FPGA2012In: 2012 Mediterranean Conference on Embedded Computing, MECO 2012, IEEE conference proceedings, 2012, p. 5-8Conference paper (Refereed)
    Abstract [en]

    This paper discusses the portability issues of soft microprocessor used on FPGA platform. The problems of maintaining a long life cycle system related to soft microprocessor’s portability is emphasized. Three soft microprocessors’ portability was analyzed in the experiments, which represent three types of soft microprocessor groups. The result shows that the system with commercial licensed vendor independent soft microprocessor possesses higher portability and reliability and it is the preferred alternative for designing a long life cycle system. The result from the paper can give guidance to the designers who suffer from microprocessor obsolescence problems.

  • 28.
    Meng, Xiaozhou
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Thörnberg, Benny
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Olsson, Leif
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Component obsolescence management model for long life cycle embedded system2012In: AUTOTESTCON (Proceedings), Anaheim, California: IEEE conference proceedings, 2012, p. 19-24Conference paper (Refereed)
    Abstract [en]

    This paper discusses the component obsolescence problem and presents a mathematic model for life cycle analysis of long life cycle embedded system maintenance. This model can estimate minimized management costs for different system architecture. Matlab is used to generate a graph and Lingo is used for linear programming. A simple CAN controller system case study is shown to apply this model. A minimized management cost and an optimized management time schedule are given as the result. The responses from the experiments of the model meet our expectation. Although the model has lots of simplifications and limitations, it can give management strategy guidance to the designers who suffer from component obsolescence problems. 

  • 29.
    Nazar Ul Islam, Muhammad
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Cheng, Peng
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Oelmann, Bengt
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Functional verification of a torque sensor based on the volumetric strain method2016In: Proceedings - 2016 IEEE International Power Electronics and Motion Control Conference (PEMC), IEEE, 2016, p. 818-823, article id 7752099Conference paper (Refereed)
    Abstract [en]

    This paper presents an experimental comparative analysis of a torque measurement method based on volumetric strain, utilizing a prototype torque sensor design is compared to a reference high performance torque sensor. A brief description of the background work of the numerical analysis of the method is also discussed as well as the readout electronics design. Based on the simulations and readout electronics analysis it is concluded that the sensor has a mechanical range of ±300 N·m. The manufacturing details of the prototype torque sensor are also discussed. A test setup is used to place the two torque sensors in line, to allow comparison for which a high performance conventional off-the-shelf torque sensor is selected. The experiments show that the proposed method of torque measurement can be fully implemented and used to measure torque with higher response time, resolution and wider range. Furthermore, future work is proposed to fully characterize the sensor over the full range using a reference setup rather than a torque sensor, as the available conventional sensors cannot be used to characterize the prototype torque sensor in full range with higher performance than the sensor itself.

  • 30.
    Nazar Ul Islam, Muhammad
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Cheng, Peng
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Oelmann, Bengt
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Method of torque measurement based on volumetric strain2016In: Proceedings of the SICE Annual Conference 2016 Tsukuba, Japan, September 20-23, 2016, IEEE, 2016, p. 116-123, article id 7749205Conference paper (Refereed)
    Abstract [en]

    This paper proposes a torque measurement method based on volumetric strain. A model of the measurement system based on the differential pressure monitoring is proposed and theoretically discussed. The error sources are identified and an error propagation model is presented for the proposed torque measurement method. Considering these error sources, a prototype torque sensor is presented as a case study for the method verification. Both the mechanical and readout electronics design are discussed and analyzed. The mechanical sensitivity and maximum stresses are analyzed using Finite Element Method. Whereas, the readout electronics is experimentally verified using an off-the-shelf high performance differential pressure sensor. The results from the conducted analysis show that the presented design of torque sensor can be used to measure torque in the range of ±300 N·m with the resolution of 0.006 % of full scale. The maximum observed stress on the proposed structure is 220 MPa. The experiments conducted on the readout electronics show that the differential pressure sensor is the limiting factor in the design when it comes to the resolution. In conclusion it is summarized that the presented torque sensor can be used in industrial applications requiring both high resolution and wide range. Moreover, the method is fully adaptable to various performance requirements in terms of range and resolution. The future work is also discussed to implement the presented design and characterize it using reference instruments.

  • 31.
    Nygård Skalman, Jonas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    CO2 Sensor Core on FPGA: ASIC prototyping and cost estimates2018Independent thesis Advanced level (professional degree), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Demand of CO2 gas sensors is expected to continue to increase in the foreseeable future, due to an increasing awareness of air pollution and fossil fuel emissions. A truly low cost and accurate NDIR sensor has the potential of greatly benefiting the environment by an increased human awareness due to CO2 measurements. In the objective to reach these goals, a CO2 sensor core on an ASIC needs to be investigated. In this study an ASIC prototype design is tested on an FPGA and evaluated towards logic resource requirements, power analysis and estimated cost impacts towards a full ASIC. The results show that a potential ASIC implementation would have a very small cost impact on a full system design if the use of a preexisting ASIC design is utilized. Using a manufacturing process of 180 nm, the total logic implementation would require between 0.54-0.76 mm2. The cost impact of such a logic area would be around $0.025 USD per chip. The power consumption of the logical part would also be very small when compared to the various analog components of a full system design.

  • 32.
    Shallari, Irida
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Intelligence Partitioning for IoT: Communication and Processing Inter-Effects for Smart Camera Implementation2019Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    The Internet of Things (IoT) is becoming a tangible reality, with a variety of sensors, devices and data centres interconnected to support scenarios such as Smart City with information about traffic, city administration, health-care services and entertainment. Decomposing these systems into smaller components, results in a variety of requirements for processing and communication resources for each subsystem. Wireless Vision Sensor Network (WVSN) is one of the subsystems, relying on visual sensors that produce several megabytes of data every second, unlike temperature or pressure sensors producing several bytes of data every hour. In addition, to facilitate the deployment of the nodes for different environments, we consider themas battery-operated devices. The high data rates from the imaging sensor have extensive computational and communication requirements, which in the meantime should meet the constraints regarding the energy efficiency of the device, to ensure a satisfactory battery lifetime.

    In this thesis we analyse the energy efficiency of the smart camera, including the smart camera architecture, the distribution of the image processing tasks between several processing elements, and the inter-effects of processing and communication. Sensor selection and algorithmic implementation of the image processing tasks affects the processing energy consumption of the node, alongside to the hardware and software implementation of the tasks.

    Furthermore, considerations of different intelligence partitioning configurations are included in the analysis of communication related elements, such as communication delays and channel utilisation. The inter-effects resulting from the variety of configurations in image processing allocation and communication technologies with different characteristics provide an insight into the overall variations of the smart camera node energy consumption. The aim of thesis is to facilitate the design of energy efficient smart cameras, while providing an understanding of energy consumption variations related to processing and communication configurations.

  • 33.
    Shallari, Irida
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Anwar, Qaiser
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Imran, Muhammad
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Background Modelling, Analysis and Implementation for Thermographic Images2017In: PROCEEDINGS OF THE 2017 SEVENTH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING THEORY, TOOLS AND APPLICATIONS (IPTA 2017), IEEE, 2017Conference paper (Refereed)
    Abstract [en]

    Background subtraction is one of the fundamental steps in the image-processing pipeline for distinguishing foreground from background. Most of the methods have been investigated with respect to visual images, in which case challenges are different compared to thermal images. Thermal sensors are invariant to light changes and have reduced privacy concerns. We propose the use of a low-pass IIR filter for background modelling in thermographic imagery due to its better performance compared to algorithms such as Mixture of Gaussians and K-nearest neighbour, while reducing memory requirements for implementation in embedded architectures. Based on the analysis of four different image datasets both indoor and outdoor, with and without people presence, the learning rate for the filter is set to 3×10-3 Hz and the proposed model is implemented on an Artix-7 FPGA.

  • 34.
    Shallari, Irida
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Imran, Muhammad
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. HIAB AB.
    Lawal, Najeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Evaluating Pre-Processing Pipelines for Thermal-Visual Smart Camera2017In: Proceedings of the 11th International Conference on Distributed Smart Cameras, ACM Digital Library, 2017, Vol. F132201, p. 95-100Conference paper (Refereed)
    Abstract [en]

    Smart camera systems integrating multi-model image sensors provide better spectral sensitivity and hence better pass-fail decisions. In a given vision system, pre-processing tasks have a ripple effect on output data and pass-fail decision of high level tasks such as feature extraction, classification and recognition. In this work, we investigated four pre-processing pipelines and evaluated the effect on classification accuracy and output transmission data. The pre-processing pipelines processed four types of images, thermal grayscale, thermal binary, visual and visual binary. The results show that the pre-processing pipeline, which transmits visual compressed Region of Interest (ROI) images, offers 13 to 64 percent better classification accuracy as compared to thermal grayscale, thermal binary and visual binary. The results show that visual raw and visual compressed ROI with suitable quantization matrix offers similar classification accuracy but visual compressed ROI offers up to 99 percent reduced communication data as compared to visual ROI.

  • 35.
    Shallari, Irida
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Krug, Silvia
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Architectural evaluation of node: server partitioning for people counting2018In: ACM International Conference Proceeding Series, New York: ACM Digital Library, 2018, article id Article No. 1Conference paper (Refereed)
    Abstract [en]

    The Internet of Things has changed the range of applications for cameras requiring them to be easily deployed for a variety of scenarios indoor and outdoor, while achieving high performance in processing. As a result, future projections emphasise the need for battery operated smart cameras, capable of complex image processing tasks that also communicate within one another, and the server. Based on these considerations, we evaluate in-node and node – server configurations of image processing tasks to provide an insight of how tasks partitioning affects the overall energy consumption. The two main energy components taken in consideration for their influence in the total energy consumption are processing and communication energy. The results from the people counting scenario proved that processing background modelling, subtraction and segmentation in-node while transferring the remaining tasks to the server results in the most energy efficient configuration, optimising both processing and communication energy. In addition, the inclusion of data reduction techniques such as data aggregation and compression not always resulted in lower energy consumption as generally assumed, and the final optimal partition did not include data reduction.

  • 36.
    Shallari, Irida
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Krug, Silvia
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Communication and Computation Inter-Effects in People Counting Using Intelligence PartitioningManuscript (preprint) (Other academic)
  • 37.
    Shen, Wei
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Zhang, Tingting
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Gidlund, Mikael
    ABB Corporate Research.
    Distributed Data Gathering Scheduling Protocol for Wireless Sensor Actor and Actuator Networks2012In: Communications (ICC), 2012 IEEE International Conference on, IEEE Communications Society, 2012, p. 7120-7125Conference paper (Refereed)
    Abstract [en]

    This paper presents a cross-layer distributed scheduling protocol for sensor data gathering transmission inwireless sensor actor and actuator networks. We propose the parent-dominant decision scheduling with collision free (PDDS-CF) algorithm to adapt the dynamics of links in a realistic low-power wireless network. In addition, the protocol has a light-weight mechanism to maintain the conflict links. We have evaluated the protocol andimplementation in TinyOS and Telosb hardware. The experiment shows that our protocol has robustness to the topology changes and it has significant improvements to reduce the traffic load in realistic wireless networks.

  • 38.
    Shen, Wei
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information and Communication systems.
    Zhang, Tingting
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information and Communication systems.
    Gidlund, Mikael
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information and Communication systems. ABB Corp Res, Vasterås, Sweden.
    Dobslaw, Felix
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Computer and System science.
    SAS-TDMA: A Source Aware Scheduling Algorithm for Real-Time Communication in Industrial Wireless Sensor Networks2013In: Wireless networks, ISSN 1022-0038, E-ISSN 1572-8196, Vol. 19, no 6, p. 1155-1170Article in journal (Refereed)
    Abstract [en]

    Scheduling algorithms play an importantrole for TDMA-based wireless sensor networks. ExistingTDMA scheduling algorithms address a multitude of objectives.However, their adaptation to the dynamics of a realistic wirelesssensor network has not been investigated in a satisfactorymanner. This is a key issue considering the challenges withinindustrial applications for wireless sensor networks, given thetime-constraints and harsh environments.In response to those challenges, we present SAS-TDMA, asource-aware scheduling algorithm. It is a cross-layer solutionwhich adapts itself to network dynamics. It realizes a tradeoffbetween scheduling length and its configurational overheadincurred by rapid responses to routes changes. We implementeda TDMA stack instead of the default CSMA stack and introduceda cross-layer for scheduling in TOSSIM, the TinyOS simulator.Numerical results show that SAS-TDMA improves the qualityof service for the entire network. It achieves significant improvementsfor realistic dynamic wireless sensor networks whencompared to existing scheduling algorithms with the aim tominimize latency for real-time communication.

  • 39.
    Wang, Jiayi
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Evaluation of open source IP based embedded system with Linux2013Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    Embedded system plays an important role in various industry applications. An embedded system is consisting of software and hardware. The hardware platform of conventional embedded system is typically based on IC chips that have fixed resources. Besides, with the development of FPGA, an emerging approach for designing embedded system is implementing soft IP cores on FPGAs. Soft IP cores are synthesizable hardware blocks described in HDL language. Their source code can be either open or close to public. For example, OpenRISC 1200, is an open source 32-bit RISC microprocessor. In addition, the increasing complexity of embedded system forces software developers to consider operating system support to reduce their workload. Thus, in this thesis, a prototype of open source IP based embedded system with Linux is implemented on Atlys (Xilinx Spartan-6) FPGA board and the goal is to evaluate if the system is appropriate for industrial applications. The hardware platform is ORPSOC, which is a reference SoC design based on OpenRISC 1200 processor. For software, Linux operating system is installed. Furthermore, an application executes on Linux is developed that reads the output of an I2C compass sensor-LSM303DLM. With the success of the application and the investigation of license issues, the conclusion is drawn that open source IP based embedded system with Linux is usable for industry. Although comparing to conventional embedded system, the open source IP based embedded system with Linux has following cons, such as high product cost, basic-supported development environment and more difficult software development if Linux driver doesn’t support the hardware. However, its pros are high flexibility and scalability, high software portability, low software development difficulty and high reusability that make it more suitable for industry usage.

  • 40.
    zhang, zhennan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Camera Node for Conical Volumetric Surveillance2014Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    Generally  cameras  are  used  for  area  based  surveillance,  but  with  advancement  in  technology, cameras  can  be  employed  for wide  area  space  surveillance  (volumetric space surveillance). The volumetric systems require a number of cameras in order to cover a large area. Single panoramic cameras  do  not  provide  required  functionality  for  wide  area  space  surveillance  and Pan-Tile-Zoom (PTZ) cameras do not either cover wide areas.   To  meet  this challenge,  we  propose  a  cost  effective smart volumetric  surveillance system  which utilizes smaller number of cameras in order to provide a coverage of 360 degree. A test case used for this system includes detection of birds in the wind farms. The proposed approach provides a solution  for recording/preventing collision  of  birds  with  wind turbine. To  realize  the  system, a model is developed with two camera nodes. This model provides a 360 degree conical volumetric space coverage. The  system is  utilizing  a  servo  motor  with  capability  of  changing  speed  and arduino  embedded  platform for  controlling  different  functionality. After  triggering  the  camera nodes from arduino, software perform the image analysis.  This  cost  effective  and  wide  area  surveillance  system  consumes at  least half lower  power as compared  to traditional  linear  systems with  eight  cameras. It  is  worth  noting  that  the system provides  conical  shaped  area coverage  of  200  square  meters  with  height ranging  from approximately 40 to 100 meters. The system would capture images in raw format in local storage and  the test  results  show  that  saving  images  with  PNG  format  requires a small  memory  size  as compared  to BMP  and TIFF.    Experiment  results  indicate  that  surveillance  system  can  be effectively employed for detecting birds in opening places.

1 - 40 of 40
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf