miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Mechanical Energy and Propulsion in Ergometer Double Poling by Cross-country Skiers
Norwegian Univ Sci & Technol, Dept Neurosci, Ctr Elite Sports Res, N-7489 Trondheim, Norway..
Norwegian Univ Sci & Technol, Dept Neurosci, Ctr Elite Sports Res, N-7489 Trondheim, Norway..
Mid Sweden University, Faculty of Human Sciences, Department of Health Sciences.ORCID iD: 0000-0002-3814-6246
Norwegian Univ Sci & Technol, Dept Neurosci, Ctr Elite Sports Res, N-7489 Trondheim, Norway.
2015 (English)In: Medicine & Science in Sports & Exercise, ISSN 0195-9131, E-ISSN 1530-0315, Vol. 47, no 12, 2586-2594 p.Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

Purpose This study aims to investigate fluctuations in total mechanical energy of the body (E-body) in relation to external ergometer work (W-erg) during the poling and recovery phases of simulated double-poling cross-country skiing. Methods Nine male cross-country skiers (mean SD age, 24 5 yr; mean +/- SD body mass, 81.7 +/- 6.5 kg) performed 4-min submaximal tests at low-intensity, moderate-intensity, and high-intensity levels and a 3-min all-out test on a ski ergometer. Motion capture analysis and load cell recordings were used to measure body kinematics and dynamics. From these, W-erg, E-body (sum of the translational, rotational, and gravitational potential energies of all segments), and their time differentials (power P) were calculated. P(tot)the rate of energy absorption or generation by muscles-tendonswas defined as the sum of P-body and P-erg. ResultsE(body) showed large fluctuations over the movement cycle, decreasing during poling and increasing during the recovery phase. The fluctuation in P-body was almost perfectly out of phase with P-erg. Some muscle-tendon energy absorption was observed at the onset of poling. For the rest of poling and throughout the recovery phase, muscles-tendons generated energy to do W-erg and to increase E-body. Approximately 50% of cycle P-tot occurred during recovery for all intensity levels. Conclusions In double poling, the extensive contribution of the lower extremities and trunk to whole-body muscle-tendon work during recovery facilitates a direct transfer of E-body to W-erg during the poling phase. This observation reveals that double poling involves a unique movement pattern different from most other forms of legged terrestrial locomotion, which are characterized primarily by inverted pendulum or spring-mass types of movement.

Place, publisher, year, edition, pages
2015. Vol. 47, no 12, 2586-2594 p.
Keyword [en]
CROSS-COUNTRY SKIING, DYNAMICS, MECHANICAL WORK, BIOMECHANICS, LOCOMOTION
National Category
Sport and Fitness Sciences
Identifiers
URN: urn:nbn:se:miun:diva-26486DOI: 10.1249/MSS.0000000000000723ISI: 000364561800013PubMedID: 26110695Scopus ID: 2-s2.0-84947283516OAI: oai:DiVA.org:miun-26486DiVA: diva2:882752
Available from: 2015-12-15 Created: 2015-12-15 Last updated: 2016-01-13Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMedScopus

Search in DiVA

By author/editor
Holmberg, Hans-Christer
By organisation
Department of Health Sciences
In the same journal
Medicine & Science in Sports & Exercise
Sport and Fitness Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 120 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf