miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Integration of an interferometric IR absorber into an epoxy membrane based CO2 detector
Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. (Detector and Photonics)
Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. (Detector and Photonics)
Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. (Detector and Photonics)
SenseAir AB, Delsbo, Sweden.
2014 (English)In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 9, no 5, p. Art. no. C05035-Article in journal (Refereed) Published
Abstract [en]

Measurements of carbon dioxide levels in the environment are commonly performedby using non-dispersive infrared technology (NDIR). Thermopile detectors are often used in NDIRsystems because of their non-cooling advantages. The infrared absorber has a major influence onthe detector responsivity. In this paper, the fabrication of a SU-8 epoxy membrane based Al/Bithermopile detector and the integration of an interferometric infrared absorber structure of wavelength around 4 µ m into the detector is reported. The membrane of thermopile detector has beenutilized as a dielectric medium in an interferometric absorption structure. By doing so, a reduction in both thermal conductance and capacitance is achieved. In the fabrication of the thermopile,metal evaporation and lift off process had been used for the deposition of serially interconnectedAl/Bi thermocouples. Serial resistance of fabricated thermopile was measured as 220 kΩ. Theresponse of fabricated thermopile detector was measured using a visible to infrared source of radiation flux 3.23 mW mm−2. The radiation incident on the detector was limited using a band passfilter of wavelength 4.26 µ m in front of the detector. A responsivity of 27.86 V mm2W−1at roomtemperature was achieved using this setup. The fabricated detector was compared to a referencedetector with a broad band absorber. From the comparison it was concluded that the integratedinterferometric absorber is functioning correctly.

Place, publisher, year, edition, pages
2014. Vol. 9, no 5, p. Art. no. C05035-
Keywords [en]
Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc); Spectrometers
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:miun:diva-21978DOI: 10.1088/1748-0221/9/05/C05035ISI: 000340036100035Scopus ID: 2-s2.0-84903641311Local ID: STCOAI: oai:DiVA.org:miun-21978DiVA, id: diva2:719910
Conference
15th INTERNATIONAL WORKSHOP ON RADIATION IMAGING DETECTORS 23–27 JUNE 2013,PARIS, FRANCE
Available from: 2014-05-27 Created: 2014-05-27 Last updated: 2017-12-05Bibliographically approved
In thesis
1. Design and Integration of Infrared Absorber Structures into Polymer Membranes based Thermal Detectors
Open this publication in new window or tab >>Design and Integration of Infrared Absorber Structures into Polymer Membranes based Thermal Detectors
2015 (English)Licentiate thesis, comprehensive summary (Other academic)
Place, publisher, year, edition, pages
Sundsvall: Mid Sweden University, 2015. p. 90
Series
Mid Sweden University licentiate thesis, ISSN 1652-8948 ; 118
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:miun:diva-26176 (URN)STC (Local ID)978-91-88025-20-3 (ISBN)STC (Archive number)STC (OAI)
Presentation
2015-09-17, O111, Holmgatan 10, Sundsvall, 10:00 (English)
Opponent
Supervisors
Available from: 2015-11-02 Created: 2015-10-30 Last updated: 2017-03-02Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Ashraf, ShakeelMattsson, ClaesThungström, Göran

Search in DiVA

By author/editor
Ashraf, ShakeelMattsson, ClaesThungström, Göran
By organisation
Department of Electronics Design
In the same journal
Journal of Instrumentation
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 707 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf