Dye-sensitized solar cell (DSSC) is a low cost and efficient way to transform solar radiation to electricity. Indium tin oxide (ITO) and fluorine doped tin oxide (FTO) coated glass are two kinds of transparent electrodes that are mostly used to fabricate DSSCs. However, these two kinds electrodes lack flexibility, limiting their development. [1] Flexible electrodes are desired in DSSC because of they are lightweight, low cost and ro田l-to-roll compatible. There are attempts to replace both [1] or one [2] of the two electrodes in DSSC. However, the efficiencies are relatively low. Here we reported a simple method to fabricate graphite-carbon nanotube (G-CNT) composited flexible electrode for using as counter electrode in DSSC. The electrodes are simple fabricated by reverse filtration and flash sintering, leading to highly flexible (360 °C) and conductive (sheet resistance, 100 Ohm/sq) electrodes that can be used as both catalyzer and current collector. The energy conversion efficiency of such electrode based DSSC can reach 2.02% with fill factor of 0.56 (Figure 1).
Figure 1. Photograph of the G-CNT composited flexible electrode, and the J-V characterization of the fabricated DSSC.
References:
[1] W. Wang, Q. Zhang, H. Li, G. W. Wu, D. C. Zou, D. P. Yu, Adv. Funct. Mater. 2012, 22, 2775-2782.
[2] B. Wang, L. L. Kerr, Sol. Energy Mater. Sol. Cells. 2011, 95, 2531-2535.
2014.
2nd International conference on Clean Energy Science,13-16 April 2014 Qingdao, China