miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Point spreading in turbid media with anisotropic single scattering
Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences, Engineering and Mathematics.
Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences, Engineering and Mathematics.
Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences, Engineering and Mathematics.ORCID iD: 0000-0002-0529-1009
2011 (English)In: Optics Express, ISSN 1094-4087, E-ISSN 1094-4087, Vol. 19, no 3, p. 1915-1920Article in journal (Refereed) Published
Abstract [en]

Point spreading is investigated using general radiative transfer theory. We find that the single scattering anisotropy plays a significant role for point spreading together with the medium mean free path, single scattering albedo and thickness. When forward scattering dominates, the light will on average undergo more scattering events to give a specific optical response in reflectance measurements. This will significantly increase point spreading if the medium is low absorbing with large mean free path. Any fundamental and generic model of point spreading must capture the dependence on all of these medium characteristics.

Place, publisher, year, edition, pages
OSA , 2011. Vol. 19, no 3, p. 1915-1920
Keywords [en]
OPTICAL-PROPERTIES; PAPER; REFLECTANCE; MTF
National Category
Other Engineering and Technologies Computational Mathematics
Identifiers
URN: urn:nbn:se:miun:diva-13113DOI: 10.1364/OE.19.001915ISI: 000286807100026PubMedID: 21369006Scopus ID: 2-s2.0-79851482792OAI: oai:DiVA.org:miun-13113DiVA, id: diva2:389261
Projects
PaperOptOptics of Paper and Print - Continuous ModelsAvailable from: 2011-01-19 Created: 2011-01-19 Last updated: 2017-12-11Bibliographically approved
In thesis
1. Angle Resolved Light Scattering in Turbid Media: Analysis and Applications
Open this publication in new window or tab >>Angle Resolved Light Scattering in Turbid Media: Analysis and Applications
2011 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Light scattering in turbid media is essential for such diverse application areas as paper and print, computer rendering, optical tomography, astrophysics and remote sensing. This thesis investigates angular variations of light reflected from plane-parallel turbid media using both mathematical models and reflectance measurements, and deals with several applications. The model of most widespread use in industry is the Kubelka-Munk model, which neglects angular variations in the reflected light. This thesis employs a numerical solution of the angle resolved radiative transfer problem to better understand how the angular variations are related to medium properties. It is found that the light is reflected anisotropically from all media encountered in practice, and that the angular variations depend on the medium absorption and transmittance and on the angular distribution of the incident light. If near-surface bulk scattering dominates, as in strongly absorbing or highly transmitting media or obliquely illuminated media, relatively more light is reflected in large polar (grazing) angles. These results are confirmed by measurements using a set of paper samples. The only situation with isotropic reflectance is when a non-transmitting, non-absorbing medium is illuminated diffusely. This is the only situation where the Kubelka-Munk model is exactly valid. The results also show that there is no such thing as an ideal bulk scattering diffusor, and these findings can affect calibration and measurement procedures defined in international standards.The implications of the presented results are studied for a set of applications including reflectance measurements, angle resolved color and point spreading. It is seen that differences in instrument detection and illumination geometry can result in measurement differences. The differences are small and if other sources of error - such as fluorescence and gloss - are not eliminated, the differences related to instrument geometry become difficult to discern. Furthermore, the angle resolved color of a set of paper samples is assessed both theoretically and experimentally. The chroma decreases and the lightness increases as the observation polar angle increases. The observed differences are clearly large, and it is an open issue how angle resolved color should be handled. Finally, the dependence of point spreading in turbid media on the medium parameters is studied. The asymmetry factor is varied while maintaining constant the optical response in a standardized measurement geometry. It is seen that the point spreading increases as forward scattering becomes more dominant, and that the effect is larger if the medium is low-absorbing with large mean free path. A generic model of point spreading must therefore capture the dependence on all of these medium parameters.This thesis shows that turbid media reflect light anisotropically, and angle resolved radiative transfer models are therefore necessary to capture this. Using simplified models can introduce errors in an uncontrolled manner. The results presented potentially have consequences for all applications dealing with light scattering, some of which are studied here.

Place, publisher, year, edition, pages
Härnösand: Mid Sweden University, 2011. p. 17
Series
Mid Sweden University licentiate thesis, ISSN 1652-8948 ; 56
National Category
Other Engineering and Technologies
Identifiers
urn:nbn:se:miun:diva-13154 (URN)978-91-86694-22-7 (ISBN)
Presentation
2011-02-16, O111, Gånsviksvägen 2, Härnösand, 10:00 (English)
Opponent
Supervisors
Available from: 2011-01-25 Created: 2011-01-25 Last updated: 2011-01-25Bibliographically approved
2. Whiteness and Fluorescence in Layered Paper and Board: Perception and Optical Modelling
Open this publication in new window or tab >>Whiteness and Fluorescence in Layered Paper and Board: Perception and Optical Modelling
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis is about modelling and predicting the perceived whiteness of plain paper from the paper composition, including fluorescent whitening agents. This involves psychophysical modelling of perceived whiteness from measurable light reflectance properties, and physical modelling of light scattering and fluorescence from the paper composition.

Existing models are first tested and improvements are suggested and evaluated. A colour appearance model including simultaneous contrast effects (CIECAM02-m2), earlier tested on coloured surfaces, is successfully applied to perceived whiteness. An extension of the Kubelka-Munk light scattering model including fluorescence for turbid media of finite thickness is successfully tested for the first time on real papers. It is extended to layered constructions with different layer optical properties and modified to enable parameter estimation with conventional d/0° spectrophotometers used in the paper industry. Lateral light scattering is studied to enable simulating the spatially resolved radiance factor from layered constructions, and angle-resolved radiance factor simulations are performed to study angular variation of whiteness.

It is shown that the linear CIE whiteness equation fails to predict the perceived whiteness of highly white papers with distinct bluish tint. This equation is applicable only in a defined region of the colour space, a condition that is shown to be not fulfilled by many commercial office papers, although they appear white to most observers. The proposed non-linear whiteness equations give to these papers a whiteness value that correlates with their perceived whiteness, while application of the CIE whiteness equation outside its region of validity overestimates perceived whiteness.

It is shown that the fluorescence efficiency of FWA is essentially dependent only on the ability of the FWA to absorb light in its absorption band. Increased FWA concentration leads accordingly to increased whiteness. However, since FWA absorbs light in the violet-blue region of the electromagnetic spectrum, the reflectance factor decreases in that region with increasing FWA amount. This violet-blue absorption tends to give a greener shade to the paper and explains most of the observed greening and whiteness saturation at larger FWA concentrations. A red-ward shift of the quantum efficiency is observed with increasing FWA concentration, but this is shown to have a negligible effect on the whiteness value. The results are directly applicable to industrial applications for better instrumental measurement of whiteness and thereby optimising the use of FWA with the goal to improve the perceived whiteness.

Place, publisher, year, edition, pages
Sundsvall: annat förlag, 2012. p. 158
Series
Mid Sweden University doctoral thesis, ISSN 1652-893X ; 138
Keywords
Whiteness, Perception, Colour Appearance Modelling, Paper Optics, Light Scattering, Fluorescence, Lateral Light Scattering, White-Top Mottle, Kubelka-Munk, Radiative Transfer
National Category
Paper, Pulp and Fiber Technology Atom and Molecular Physics and Optics
Identifiers
urn:nbn:se:miun:diva-17782 (URN)978-91-87103-50-6 (ISBN)
Public defence
2013-01-23, Sal 0111, Mittuniversitetet, Holmgatan 10, Sundsvall, 10:31 (English)
Opponent
Supervisors
Projects
PaperOpt
Funder
The Knowledge FoundationVinnova
Available from: 2012-12-20 Created: 2012-12-17 Last updated: 2012-12-20Bibliographically approved
3. Applied problems and computational methods in radiative transfer
Open this publication in new window or tab >>Applied problems and computational methods in radiative transfer
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Light scattering in turbid media is essential for such diverse applications as paperand print, computer rendering, optical tomography, astrophysics and remote sensing.This thesis investigates angular variations of light reflected from plane-parallelturbid media using both mathematical models and reflectance measurements, dealswith several applications and proposes novel computational methods for solving thegoverning equations.Angular variations of light reflected from plane-parallel turbid media is studiedusing both mathematical models and reflectance measurements. It is found that thelight is reflected anisotropically from all media encountered in practice, and that theangular variations depend on the medium absorption and transmittance and on theangular distribution of the incident light. If near-surface bulk scattering dominates,as in strongly absorbing or highly transmitting media or obliquely illuminated media,relatively more light is reflected in large polar (grazing) angles. These results areconfirmed by measurements using a set of paper samples. The only situation withisotropic reflectance is when a non-transmitting, non-absorbing medium is illuminateddiffusely, and it is shown that this is the only situation where the widely usedKubelka-Munk model is exactly valid.A number of applied problems is studied, including reflectance measurements,angle resolved color and point spreading. It is seen that differences in instrumentdetection and illumination geometry can result in measurement differences. The differencesare small and if other sources of error — such as fluorescence and gloss— are not eliminated, the differences related to instrument geometry become difficultto discern. Furthermore, the dependence of point spreading in turbid mediaon the medium parameters is studied. The asymmetry factor is varied while maintainingconstant the optical response in a standardized measurement geometry. It isseen that the point spreading increases as forward scattering becomes more dominant,and that the effect is larger if the medium is low-absorbing with large meanfree path. It is argued that the directional inhomogeneity of the scattering mediummust be captured by the model to reproduce experimental results. Finally, the angleresolved color of a set of paper samples is assessed both theoretically and experimentally.The chroma decreases and the lightness increases as the observation polarangle increases. The observed differences are clearly large, and a modification ofthe L∗a∗b∗ formalism including angle dependent chromatic adaptation is suggestedhere to handle this situation.

The long standing issue of parameter dependence in the Kubelka-Munk modelis partially explained by recognizing that light reflected from paper samples in standardizedmeasurements has angular variations, and by using the appropriatemodelin the calculation of the scattering and absorption coefficients.The radiative transfer (RT) equation is solved with a recently proposed particlemethod (DFPM), both in standard cases and in cases previously considered intractable.Fluorescence is added to the RT equation, thus including wavelength asan additional dimension, and this equation is solved using DFPM. The discrete RTequation can be written as a system of linear equations, and a comprehensive analysisof the convergence properties of DFPM when solving this type of problems ispresented.

Place, publisher, year, edition, pages
Härnösand: Mittuniversitetet, 2013. p. 25
Series
Mid Sweden University doctoral thesis, ISSN 1652-893X ; 151
National Category
Other Physics Topics
Identifiers
urn:nbn:se:miun:diva-19776 (URN)978-91-87103-80-3 (ISBN)
Public defence
2013-09-20, Alfhild Agrell-salen, Universitetsbacken 3, Härnösand, 10:00 (Swedish)
Opponent
Supervisors
Funder
Vinnova
Available from: 2013-09-16 Created: 2013-08-26 Last updated: 2013-09-16Bibliographically approved

Open Access in DiVA

fulltext(659 kB)201 downloads
File information
File name FULLTEXT01.pdfFile size 659 kBChecksum SHA-512
9a301eebaaf75fbaaff39ca1f697fa273fced3012113196aa1c45cdf271b7233d14887784daa0b7d55cb2650cba3ae9fc02016f0d23845350b31721a70f07155
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMedScopus

Authority records BETA

Neuman, MagnusCoppel, LudovicEdström, Per

Search in DiVA

By author/editor
Neuman, MagnusCoppel, LudovicEdström, Per
By organisation
Department of Natural Sciences, Engineering and Mathematics
In the same journal
Optics Express
Other Engineering and TechnologiesComputational Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 201 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 418 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf