miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On crack growth under compressive stresses
Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Physics and Mathematics. (FSCN – Fibre Science and Communication Network)
Responsible organisation
2001 (English)Doctoral thesis, monograph (Other academic)
Abstract [en]

This thesis concerns fractures subjected to compressive stresses. In the four papers appended fracture behavior in brittle as well as ductile materials is studied. In the first paper, an expression for the mode II stress intensity factor at a straight extended kink has been calculated under the condition that crack opening is suppressed during crack growth. The expression has been found as a function of the mode II stress intensity factor K2 at the parent crack, the direction and length of the kink, and the difference between the remote compressive normal stresses perpendicular to, and parallel with, the plane of the parent crack. Crack growth directions have been suggested based on the result. At a sufficiently high non-isotropic compressive normal stress, so that the crack remains closed, the crack will propagate along a curved path maximizing the mode II stress intensity factor. Only at an isotropic compressive normal stress will the crack continue straight ahead in its original plane without directional change. By analyzing experimental crack growth patterns in paper two, the conclusion is that crack paths experimentally observed indicate that mode II crack growth under compression in some brittle materials follow a propagation path described by a function y=gx^b. In fact, the agreement between the experiments and the propagation path prescribed by the model, in which b=3/2, is astonishingly good since b was found in the interval [1.43-1.58] in all the experiments studied. Further, the investigation of the curvature parameter g has revealed that g also agree with the simplified model, even though not as good as the exponent b. However, the experimentally observed g differs in general less than 15% from the theoretical value predicted by the analytical model discussed in paper I. In paper three, a directional crack growth criterion in a compressed elastic perfectly-plastic material is considered. A slip-line solution is derived for evaluation of the stresses at the crack tip, which considers hydrostatic pressure and friction between the crack surfaces. Based upon the slip-line solution a projection stress based model is discussed for prediction of the direction of initiated crack growth. The opening displacement of an extended kink has been examined in paper four, using a finite element procedure. The conclusion is that an over-critical pressure in the plastic zone surrounding the crack tip suppresses crack opening regardless the direction of crack growth. The only possibility seems to be shear mode crack growth, which occur straight ahead in the crack plane if the crack is assumed to follow the plane of maximum shear stress. At a sub-critical hydrostatic pressure, or lower friction between the crack surfaces, the crack can extend via a kink subjected to local opening mode. An expression for the critical value determining fracture mode has been found as a function of hydrostatic pressure and friction between the crack surfaces assuming the fracture process to be predominantly controlled by local tensile stresses at the crack tip. The crack growth directions predicted by the projection stress based criterion in paper three are comparable with the directions maximizing the opening displacement of an extended kink computed in paper four.

Place, publisher, year, edition, pages
Luleå: Univ. , 2001.
Series
Doctoral thesis / Luleå University of Technology, ISSN 1402-1544 ; 2001:06
Keyword [en]
Ph.D. Thesis, Fracture mechanics
National Category
Paper, Pulp and Fiber Technology
Identifiers
URN: urn:nbn:se:miun:diva-5501Local ID: 1477OAI: oai:DiVA.org:miun-5501DiVA: diva2:30534
Public defence
(English)
Available from: 2008-09-30 Created: 2009-06-08Bibliographically approved

Open Access in DiVA

No full text

Other links

http://epubl.luth.se/1402-1544/2001/06/index.html

Search in DiVA

By author/editor
Isaksson, Per
By organisation
Department of Engineering, Physics and Mathematics
Paper, Pulp and Fiber Technology

Search outside of DiVA

GoogleGoogle Scholar

Total: 288 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf