Out-of-plane deformations of paper, such as fluting, significantly deteriorate the quality of a printed product. There are several explanations of fluting presented in the literature but there is no unanimously accepted theory regarding fluting formation consistent with all field observations. The present paper reviews the existing theories and proposes a mechanism that might give an answer to most of the questions regarding the fluting. The fluting formation has been considered as a post-buckling phenomenon which is analysed with the help of the finite element method. Fluting retention has been modelled by introducing an ink layer over the paper surface with ink stiffness estimated from experimental results. The impact of fast drying on fluting has been assessed numerically and experimentally. The result of the study suggests that fluting occurs due to small-scale strain variations, which in turn are caused by the moisture variations created during fast convection drying. The result also showed that ink stiffening alone cannot explain the fluting amplitudes observed in practice, suggesting the presence of other mechanisms of fluting retention.