miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Examination of the Revised Kubelka-Munk Theory: Considerations of Modeling Strategies
Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Physics and Mathematics. (DPC - Digital printing center)ORCID iD: 0000-0002-0529-1009
Responsible organisation
2007 (English)In: Journal of the Optical Society of America A, ISSN 0740-3232, Vol. 24, no 2, 548-556 p.Article in journal (Refereed) Published
Abstract [en]

The revised Kubelka-Munk theory is examined theoretically and experimentally. Systems of dyed paper sheets are simulated, and the results are compared with other models. The results show that the revised Kubelka-Munk model yields significant errors in predicted dye-paper mixture reflectances, and is not self-consistent. The absorption is noticeably overestimated. Theoretical arguments show that properties in the revised Kubelka-Munk theory are inadequately derived. The main conclusion is that the revised Kubelka-Munk theory is wrong in the inclusion of the so-called scattering-induced-path-variation factor. Consequently, the theory should not be used for light scattering calculations. Instead, the original Kubelka-Munk theory should be used where its accuracy is sufficient, and a radiative transfer tool of higher resolution should be used where higher accuracy is needed.

Place, publisher, year, edition, pages
2007. Vol. 24, no 2, 548-556 p.
Keyword [en]
mathematical methods in physics, multiple scattering, turbid media
National Category
Mathematics Other Engineering and Technologies
Identifiers
URN: urn:nbn:se:miun:diva-918DOI: 10.1364/JOSAA.24.000548ISI: 000243517600029Scopus ID: 2-s2.0-33847278408Local ID: 4894OAI: oai:DiVA.org:miun-918DiVA: diva2:25950
Available from: 2008-09-30 Created: 2009-07-30 Last updated: 2016-10-04Bibliographically approved
In thesis
1. Mathematical modeling and numerical tools for simulation and design of light scattering in paper and print
Open this publication in new window or tab >>Mathematical modeling and numerical tools for simulation and design of light scattering in paper and print
2007 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This work starts with a real industrial problem - the perceived need for a moredetailed and more accurate model for light scattering in paper and print than theKubelka‐Munk model of today. A careful analysis transfers this problem into aphysical description of the phenomena involved. This is then given a mathematicalformulation, and a detailed analysis leads to numerical solution procedures forspecific sub problems. Methods from scientific computing make it possible to meetindustrial demands made on speed and stability, and implementation in computercode is then followed by analysis of accuracy and stability.A problem formulation and a solution method are outlined for the forwardradiative transfer problem. First, all necessary steps to arrive at a numericallystable solution procedure are treated, and then methods are introduced to increasethe speed by a factor of several thousands or millions compared to a naiveapproach. The method is shown to be unconditionally stable, though the problemwas previously considered numerically intractable, and systematic studies ofnumerical performance are presented.The inverse radiative transfer problem is given a least‐squares formulation, anddifferent solution methods are analyzed and compared. Specifically, a two‐phasemethod for estimation of the scattering and absorption coefficients and theasymmetry factor (σs, σa and g) is presented. A sensitivity analysis is given, and it isshown how it can be used for designing measurements with minimal impact frommeasurement noise.It is shown how the standardized use of Kubelka‐Munk and the d/0°instrument leads to errors, and that the errors arising from an over‐idealized viewof the instrument - due to the fact that instrument readings are incorrectlyinterpreted - can be larger than any errors inherent in the Kubelka‐Munk modelitself. It is argued that the measurement device and the simulation model cannot beviewed as separate instances, which is a widespread implicit practice in appliedreflectance measurements. Rather, given a measurement device, measurement datashould be interpreted through a model that takes into consideration the actualgeometry, function and calibration of the instrument.The resulting tool, DORT2002, is in all aspects the Next Generation Kubelka‐Munk, and provides a greater range of applicability, higher accuracy and increasedunderstanding. It offers better interpretation of measurement data, and facilitatesthe exchange of data between the paper and graphical arts industries. It opens forunderstanding of anisotropic reflectance and for the utilization of the asymmetryfactor to design anisotropy, and thereby for the design of different visualappearance or optical performance in new printed or paper products.

Place, publisher, year, edition, pages
Sundsvall: Mittuniversitetet, 2007. 32 p.
Series
Mid Sweden University doctoral thesis, ISSN 1652-893X ; 22
Keyword
mathematical modeling, radiative transfer, integro-differential equations, inverse problems, parameter estimation, solution method, numerical performance, light scattering, paper industry applications, Kubelka-Munk
National Category
Mathematics
Identifiers
urn:nbn:se:miun:diva-5908 (URN)5026 (Local ID)978-91-85317-50-9 (ISBN)5026 (Archive number)5026 (OAI)
Public defence
(English)
Available from: 2008-09-30 Created: 2009-05-06 Last updated: 2009-07-13Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Edström, Per
By organisation
Department of Engineering, Physics and Mathematics
In the same journal
Journal of the Optical Society of America A
MathematicsOther Engineering and Technologies

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 382 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf