miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Contractile and connective tissue protein content of human skeletal muscle:: effects of 35 and 90 days of simulated microgravity and exercise countermeasures.
Mid Sweden University, Faculty of Human Sciences, Department of Health Sciences.
Show others and affiliations
2007 (English)In: American Journal of Physiology. Regulatory Integrative and Comparative Physiology, ISSN 0363-6119, Vol. 293 , no 4, 1722-1727 p.Article in journal (Refereed) Published
Abstract [en]

We examined the effects of 35 and 90 days of simulated microgravity with or without resistance-exercise (RE) countermeasures on the content of the general skeletal muscle protein fractions (mixed, sarcoplasmic, and myofibrillar) and specific proteins that are critical for muscle function (myosin, actin, and collagen). Subjects from two studies, using either unilateral lower limb suspension (ULLS) or bed rest (BR), comprised four separate groups: 35 days ULLS (n =11), 35 days ULLS+RE (n = 10), 90 days BR (n = 9), and 90 days BR+RE (n = 8). RE consisted of four sets of seven maximal concentric and eccentric repetitions of the quadriceps femoris muscles that were performed 2 or 3 times per week. Pre- and post-simulated weightlessness muscle biopsies were analyzed from the vastus lateralis of all groups and the soleus of the 35-day ULLS and 90-day BR groups. The general protein fractions and the specific proteins myosin, actin, and collagen of the vastus lateralis were unchanged (P > 0.05) in both control and countermeasures groups over 35 and 90 days, despite large changes in quadriceps femoris muscle volume (35 days ULLS: -9%, 35 days ULLS+RE: +8%; and 90 days BR: -18%, 90 days BR+RE: -1%). The soleus demonstrated a decrease in mixed (35 days ULLS: -12%, P = 0.0001; 90 days BR: -12%, P = 0.004) and myofibrillar (35 days ULLS: -12%, P = 0.009; 90 days BR: -8%, P = 0.04) protein, along with large changes in triceps surae muscle volume (35 days ULLS: -11%; 90 days BR: -29%). Despite the loss of quadriceps femoris muscle volume or preservation with RE countermeasures during simulated microgravity, the quadriceps femoris muscles are able to maintain the concentrations of the general protein pools and the main contractile and connective tissue elements. Soleus muscle protein composition appears to be disproportionately altered during long-duration simulated weightlessness.

Place, publisher, year, edition, pages
2007. Vol. 293 , no 4, 1722-1727 p.
Keyword [en]
bed rest, muscle atrophy, flywheel, resistance training, unloading
Keyword [sv]
Idrottsvetenskap
National Category
Sport and Fitness Sciences
Identifiers
URN: urn:nbn:se:miun:diva-841PubMedID: 17670860Local ID: 5841OAI: oai:DiVA.org:miun-841DiVA: diva2:25873
Available from: 2008-09-30 Created: 2008-09-30Bibliographically approved

Open Access in DiVA

No full text

PubMed

Search in DiVA

By author/editor
Tesch, Per A
By organisation
Department of Health Sciences
In the same journal
American Journal of Physiology. Regulatory Integrative and Comparative Physiology
Sport and Fitness Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 38 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf