miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Realizing increased sub-pixel spatial resolution in X-ray imaging using displaced multiple images
Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media. (Electronics design division)
Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media. (Electronics design division, STC)
Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media. (Electronics design division)
Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
Show others and affiliations
2009 (English)In: 11th International Workshop on Radiation Imaging Detectors, 2009Conference paper, Published paper (Refereed)
Abstract [en]

In X-Ray imaging with pixel detector systems, the resolution of the image taken is dependant on the pixel size in the detector readout electronics. Depending on the functionality of the readout electronics, the surface space on the readout chip for each pixel has a minimum size, which sets the spatial resolution of the taken images. For applications where it is required to image extremely small structures in a material, the spatial resolution of the X-Ray detector system sets the limit, and readout systems with high functionality cannot be considered. One way to reach sub-pixel resolution is to use a nanofocus source to achieve an X-ray microscopy setup [1]. However, this type of X-ray source is still too expensive to be an alternative for quality assurance systems used in the industry. In this paper we focus on a much simpler way of increasing spatial resolution that has proven effective in images for visible light. By mounting either the objects for imaging or the image sensor system on a step motor table and take multiple images slightly dislocated from one another, an increase in sub-pixel spatial resolution can be achieved.

Consider the case that an image sensor system with a pixel size of 55x55 µm is available for an imaging application that requires a resolution of 20x20 µm. The application is material characterization and allows for multiple images to be taken for one sample. In this case, increasing the sub-pixel resolution by nine times (3x3) will result in a pixel size of about 18x18 µm, which would meet the requirements. This can be realized by taking nine images dislocated 1/3 of the pixel width from each other. If the upper left pixel of the centre image has coordinates (0,0) the upper left pixel of all the nine images will have coordinates (-1/3,1/3), (0,1/3), (1/3,1/3), (-1/3,0), (0,0), (1/3,0), (-1/3,-1/3), (0,-1/3) and (1/3,-1/3). The result of a direct combination of these images is illustrated in Figure 1, where one of nine images is shown at the left. Combining the images without images processing with an algorithm will yield the image in the centre, which can be compared to how the image would look in full 9x resolution (right image). As can be seen, some details are lost and the image is blurred compared to a full resolution image. However, with an image processing algorithm in the combination phase this effect can be reduced and the image quality increased.

This paper shows simulated and measured results from using dislocation imaging in X-Ray imaging systems, where the test case system will be the MEDIPIX2 system [2]. An investigation of different image processing algorithms suitable for this type of imaging is conducted. An investigation is also done to show whether detectors with large size pixels compared to the standard size in a MEDIPIX system can be combined with the described sub-pixel scaling technique. The result of this combination is used to investigate the charge sharing effects on the MEDIPIX system.

[1] Norlin B., Fröjdh C., Nuclear Instruments and Methods, sect. A (2009), doi:10.1016/j.nima.2009.03.155[2] Llopart X., Campbell M., Dinapoli R., san Segundo D., Pernigotti E., IEEE Transactions on Nuclear Science, Vol. 49, Issue 5, Part 1, pp. 2279-2283, October 2002.

Figure 1. Image (left) with 50x50 pixels, with the resulting combination of nine images forming an image with a sub-pixel resolution of 150x150 pixel (centre), compared to a full resolution reference image (right).

Place, publisher, year, edition, pages
2009.
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:miun:diva-9735OAI: oai:DiVA.org:miun-9735DiVA, id: diva2:236162
Available from: 2009-09-21 Created: 2009-09-21 Last updated: 2011-10-12Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records BETA

Thim, JanNorlin, BörjeO'Nils, MattiasAbdalla, SulimanOelmann, Bengt

Search in DiVA

By author/editor
Thim, JanNorlin, BörjeO'Nils, MattiasAbdalla, SulimanOelmann, Bengt
By organisation
Department of Information Technology and Media
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 767 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf