miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Signal variations in high granularity Si pixel detectors
Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
2004 (English)In: IEEE Transactions on Nuclear Science, ISSN 0018-9499, E-ISSN 1558-1578, Vol. 51, p. 3006-3012Article in journal (Refereed) Published
Abstract [en]

Fixed pattern noise is one of the limiting factors of image quality and degrades the achievable spatial resolution. In the case of silicon sensors non-uniformities due to doping inhomogeneities can be limited by operating the sensor in strong overdepletion. For high granularity photon counting pixel detectors an additional high frequency interpixel signal variation is an important factor for the achievable signal to noise ratio (SNR). It is common practice to apply flatfield corrections to increase the SNR of the detector system. For the case of direct conversion detectors it can be shown that the Poisson limit can be reached for floodfield irradiation. However when used for imaging with spectral X-ray sources flatfield corrections are less effective. This is partly a consequence of charge sharing between adjacent pixels, which gives rise to an effective energy spectrum seen by the readout, which is different from the spectral content of the incident beam. In this paper we present simulations and measurements of the limited applicability of flatfield corrections for spectral source imaging and investigate the origins of the high frequency interpixel noise component The model, calculations and measurements performed suggest that flatfield correction maps for photon counting detectors with a direct conversion Si sensor can be obtained from electrical characterization of the readout chip alone.

Place, publisher, year, edition, pages
2004. Vol. 51, p. 3006-3012
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:miun:diva-9378OAI: oai:DiVA.org:miun-9378DiVA, id: diva2:227454
Available from: 2009-07-13 Created: 2009-07-13 Last updated: 2017-12-13Bibliographically approved
In thesis
1. Design and characterization of 64K pixels chips working in single photon processing mode
Open this publication in new window or tab >>Design and characterization of 64K pixels chips working in single photon processing mode
2007 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Progress in CMOS technology and in fine pitch bump bonding has made

possible the development of high granularity single photon counting detectors for

X-ray imaging. This thesis studies the design and characterization of three pulse

processing chips with 65536 square pixels of 55 μm x 55 μm designed in a

commercial 0.25 μm 6-metal CMOS technology. The 3 chips share the same

architecture and dimensions and are named Medipix2, Mpix2MXR20 and Timepix.

The Medipix2 chip is a pixel detector readout chip consisting of 256 x 256

identical elements, each working in single photon counting mode for positive or

negative input charge signals. The preamplifier feedback provides compensation

for detector leakage current on a pixel by pixel basis. Two identical pulse height

discriminators are used to define an energy window. Every event falling inside the

energy window is counted with a 13-bit pseudo-random counter. The counter logic,

based in a shift register, also behaves as the input/output register for the pixel. Each

cell also has an 8-bit configuration register which allows masking, test-enabling

and 3-bit individual threshold adjust for each discriminator. The chip can be

configured in serial mode and readout either serially or in parallel. Measurements

show an electronic noise ~160 e- rms with a gain of ~9 mV/ke-. The threshold

spread after equalization of ~120 e- rms brings the full chip minimum detectable

charge to ~1100 e-. The analog static power consumption is ~8 μW per pixel with

Vdda=2.2 V.

The Mpix2MXR20 is an upgraded version of the Medipix2. The main

changes in the pixel consist of: an improved tolerance to radiation, improved pixel

to pixel threshold uniformity, and a 14-bit counter with overflow control. The chip

periphery includes new threshold DACs with smaller step size, improved linearity,

and better temperature dependence.

Timepix is an evolution of the Mpix2MXR20 which provides independently

in each pixel information of arrival time, time-over-threshold or event counting.

Timepix uses as a time reference an external clock (Ref_Clk) up to 100 MHz which

is distributed all over the pixel matrix during acquisition mode. The preamplifier is

improved and there is a single discriminator with 4-bit threshold adjustment in

order to reduce the minimum detectable charge limit. Measurements show an

electrical noise ~100 e- rms and a gain of ~16.5 mV/ke-. The threshold spread after

equalization of ~35 e- rms brings the full chip minimum detectable charge either to

~650 e- with a naked chip (i.e. gas detectors) or ~750 e- when bump-bonded to a

detector. The pixel static power consumption is ~13.5 μW per pixel with

Vdda=2.2 V and Ref_Clk=80 MHz.

This family of chips have been used for a wide variety of applications.

During these studies a number of limitations have come to light. Among those are

limited energy resolution and surface area. Future developments, such as

Medipix3, will aim to address those limitations by carefully exploiting

developments in microelectronics.

Abstract [sv]

Framstegen inom CMOS-teknologin och tekniken för bump bondning har

möjliggjort utveckling av högupplösande bilddetektorer för detektering av

enskilda röntgenfotoner eller laddade partiklar. Denna avhandling behandlar design

och karakterisering av tre pulsräknande utläsningskretsar med 65536 kvadratiska

bildelement med storleken 55 x 55 um2. De tre kretsarna, benämnda Medipix2,

Mpix2MXR20 och Timepix, delar samma arkitektur och dimensioner.

Medipix2 är en utläsningskrets för avbildning med 256 x 256 identiska

bildelement som räknar enskilda fotoner utgående från positiva eller negativa

laddningspulser. Förförstärkarens återkoppling kompenserar individuellt för

läckströmmen i varje bildelement. Ett energifönster kan definieras med hjälp av två

identiska diskriminatorkretsar. Varje händelse som faller inom energifönstret

räknas i en 13-bitars pseudo-random räknare. Räknaren, utformad som ett

skiftregister, fungerar också som in/utregister för varje bildelement. Kretsen kan

läsas ut antingen seriellt eller parallellt. Det elektroniska bruset har uppmätts till

~160 e- rms vid en förstärkning av ~9 mV/ke-. Spridningen i tröskelspänning efter

justering är ~120 e- rms vilket ger en minsta detekterbar laddningspuls över hela

kretsen på ~1100 e-. Den statiska effektförbrukningen i del analoga delen är

~8 mW per bildelement vid Vdda=2,2 V.

Mpix2MXR20 är en uppdaterad version av Medipix2. De huvudsakliga

förändringarna är: bättre strålningshärdighet, jämnare tröskelvärden och en 14-

bitsräknare med overflow. Periferin innehåller också nya DA-omvandlare med

mindre steg, förbättrad linjäritet och mindre temperaturberoende.

Timepix är en vidareutveckling av Mpix2MXR20 som medger detektering av

ankomsttid, time-over-threshold eller pulsräkning individuellt i varje bildelement.

Timepix utnyttjar en extern klocka (Ref_Clk) med frekvenser upp till 100 MHz som

distribueras över hela bildmatrisen. Förförstärkaren är förbättrad och en enkel

diskriminator med 4 bitars tröskeljustering används för att minimera lägsta

detekterbara laddningspuls. Mätningar visar ett elektroniskt brus på ~100 e- rms

och förstärkningen 16,5 mV/ke-. Med en tröskelspridning på 35 e- rms blir minsta

detekterbara laddning för den nakna kretsen (t.ex. i en gasfylld detektor) ~650 eoch

för en bondad detektor ~750 e-. Den statiska effektförbrukningen är ~13,5 mV

per bildelement vid Vdda=2,2 V och Ref_Clk= 80 MHz.

Den här kretsfamiljen har använts i ett antal olika applikationer. Under dessa

studier har ett antal begränsningar konstaterats. Bland dessa märks begränsad

energiupplösning och begränsad detektorarea. Framtida utvecklingsprojekt, t.ex.

Medipix3, kommer att inriktas på att avhjälpa dessa begränsningar genom att

utnyttja den senaste utvecklingen på mikroelektronikområdet.

Place, publisher, year, edition, pages
Sundsvall: Mid Sweden Unv, 2007. p. 139
Series
Mid Sweden University doctoral thesis, ISSN 1652-893X ; 27
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:miun:diva-45 (URN)978-91-85317-56-1 (ISBN)
Public defence
2007-05-25, M 102, Mittuniversitetet Sundsvall, Sundsvall, 10:15 (English)
Supervisors
Available from: 2007-12-05 Created: 2007-12-05 Last updated: 2011-04-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records BETA

Llopart Cudié, Xavier

Search in DiVA

By author/editor
Llopart Cudié, Xavier
By organisation
Department of Information Technology and Media
In the same journal
IEEE Transactions on Nuclear Science
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 96 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf