miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Open source Monte carlo simulation platform for particle level simulation of light scattering from generated paper structures
Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences, Engineering and Mathematics.
Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences, Engineering and Mathematics.ORCID iD: 0000-0002-0529-1009
2009 (English)In: Papermaking Research Symposium, 2009Conference paper, Published paper (Refereed)
Place, publisher, year, edition, pages
2009.
Keyword [en]
light scattering, fluorescence, paper strucutre modelling
National Category
Paper, Pulp and Fiber Technology
Identifiers
URN: urn:nbn:se:miun:diva-9122ISBN: 978-951-27-1038-6 (print)OAI: oai:DiVA.org:miun-9122DiVA, id: diva2:222641
Projects
PaperOpt
Available from: 2009-10-02 Created: 2009-06-09 Last updated: 2012-12-20Bibliographically approved
In thesis
1. Whiteness and Fluorescence in Paper: Perception and Optical Modelling
Open this publication in new window or tab >>Whiteness and Fluorescence in Paper: Perception and Optical Modelling
2010 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis is about modelling and predicting the perceived whiteness of plain paper from the paper composition, including fluorescent whitening agents. This includes psycho-physical modelling of perceived whiteness from measurable light reflectance properties, and physical modelling of light scattering and fluorescence from the paper composition.

Existing models are first tested and improvements are suggested and evaluated. The standardised and widely used CIE whiteness equation is first tested on commercial office papers with visual evaluations by different panels of observers, and improved models are validated. Simultaneous contrast effects, known to affect the appearance of coloured surfaces depending on the surrounding colour, are shown to significantly affect the perceived whiteness. A colour appearance model including simultaneous contrast effects  (CIECAM02-m2), earlier tested on coloured surfaces, is successfully applied to perceived whiteness. A recently proposed extension of the Kubelka-Munk light scattering model including fluorescence for turbid media of finite thickness is successfully tested for the first time on real papers.

It is shown that the linear CIE whiteness equation fails to predict the perceived whiteness of highly white papers with distinct bluish tint. This equation is applicable only in a defined region of the colour space, a condition that is shown to be not fulfilled by many commercial office papers, although they appear white to most observers. The proposed non-linear whiteness equations give to these papers a whiteness value that correlates with their perceived whiteness, while application of the CIE whiteness equation outside its region of validity overestimates perceived whiteness.

It is shown that the quantum efficiency of two different fluorescent whitening agents (FWA) in plain paper is rather constant with FWA type, FWA concentration, filler content, and fibre type. Hence, the fluorescence efficiency is essentially dependent only on the ability of the FWA to absorb light in its absorption band.  Increased FWA concentration leads accordingly to increased whiteness. However, since FWA absorbs light in the violet-blue region of the electromagnetic spectrum, the reflectance factor decreases in that region with increasing FWA amount. This violet-blue absorption tends to give a greener shade to the paper and explains most of the observed greening and whiteness saturation at larger FWA concentrations. A red-ward shift of the quantum efficiency is observed with increasing FWA concentration, but this is shown to have a negligible effect on the whiteness value.

The results are directly applicable to industrial applications for better instrumental measurement of whiteness and thereby optimising the use of FWA with the goal to improve the perceived whiteness. In addition, a modular Monte Carlo simulation tool, Open PaperOpt, is developed to allow future spatial- and angle-resolved particle level light scattering simulation.

 

Place, publisher, year, edition, pages
Sundsvall: Mid Sweden University, 2010. p. 94
Series
Mid Sweden University licentiate thesis, ISSN 1652-8948 ; 47
Keyword
Paper Whiteness, Fluorescence Whitening Agents, Kubelka-Munk, light scattering, paper industry applications, Colour Appearance Models, CIECAM02, Monte Carlo
National Category
Atom and Molecular Physics and Optics
Identifiers
urn:nbn:se:miun:diva-12143 (URN)978-91-86073-97-8 (ISBN)
Presentation
2010-11-09, O111, Mid Sweden University, Sundsvall, 20:30 (English)
Opponent
Supervisors
Projects
PaperOpt
Available from: 2010-10-19 Created: 2010-10-18 Last updated: 2010-10-19Bibliographically approved
2. Whiteness and Fluorescence in Layered Paper and Board: Perception and Optical Modelling
Open this publication in new window or tab >>Whiteness and Fluorescence in Layered Paper and Board: Perception and Optical Modelling
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis is about modelling and predicting the perceived whiteness of plain paper from the paper composition, including fluorescent whitening agents. This involves psychophysical modelling of perceived whiteness from measurable light reflectance properties, and physical modelling of light scattering and fluorescence from the paper composition.

Existing models are first tested and improvements are suggested and evaluated. A colour appearance model including simultaneous contrast effects (CIECAM02-m2), earlier tested on coloured surfaces, is successfully applied to perceived whiteness. An extension of the Kubelka-Munk light scattering model including fluorescence for turbid media of finite thickness is successfully tested for the first time on real papers. It is extended to layered constructions with different layer optical properties and modified to enable parameter estimation with conventional d/0° spectrophotometers used in the paper industry. Lateral light scattering is studied to enable simulating the spatially resolved radiance factor from layered constructions, and angle-resolved radiance factor simulations are performed to study angular variation of whiteness.

It is shown that the linear CIE whiteness equation fails to predict the perceived whiteness of highly white papers with distinct bluish tint. This equation is applicable only in a defined region of the colour space, a condition that is shown to be not fulfilled by many commercial office papers, although they appear white to most observers. The proposed non-linear whiteness equations give to these papers a whiteness value that correlates with their perceived whiteness, while application of the CIE whiteness equation outside its region of validity overestimates perceived whiteness.

It is shown that the fluorescence efficiency of FWA is essentially dependent only on the ability of the FWA to absorb light in its absorption band. Increased FWA concentration leads accordingly to increased whiteness. However, since FWA absorbs light in the violet-blue region of the electromagnetic spectrum, the reflectance factor decreases in that region with increasing FWA amount. This violet-blue absorption tends to give a greener shade to the paper and explains most of the observed greening and whiteness saturation at larger FWA concentrations. A red-ward shift of the quantum efficiency is observed with increasing FWA concentration, but this is shown to have a negligible effect on the whiteness value. The results are directly applicable to industrial applications for better instrumental measurement of whiteness and thereby optimising the use of FWA with the goal to improve the perceived whiteness.

Place, publisher, year, edition, pages
Sundsvall: annat förlag, 2012. p. 158
Series
Mid Sweden University doctoral thesis, ISSN 1652-893X ; 138
Keyword
Whiteness, Perception, Colour Appearance Modelling, Paper Optics, Light Scattering, Fluorescence, Lateral Light Scattering, White-Top Mottle, Kubelka-Munk, Radiative Transfer
National Category
Paper, Pulp and Fiber Technology Atom and Molecular Physics and Optics
Identifiers
urn:nbn:se:miun:diva-17782 (URN)978-91-87103-50-6 (ISBN)
Public defence
2013-01-23, Sal 0111, Mittuniversitetet, Holmgatan 10, Sundsvall, 10:31 (English)
Opponent
Supervisors
Projects
PaperOpt
Funder
The Knowledge FoundationVinnova
Available from: 2012-12-20 Created: 2012-12-17 Last updated: 2012-12-20Bibliographically approved

Open Access in DiVA

fulltext(584 kB)811 downloads
File information
File name FULLTEXT01.pdfFile size 584 kBChecksum SHA-512
8a4d30849f9ed705fd489bc8e44df4c6b68a5c3621f22168046aa58f700de5d5ca2a412267edf1e934cc83e394206ca6402f0b18b43b357acc86c00a84d0c0da
Type fulltextMimetype application/pdf

Authority records BETA

Gustafsson Coppel, LudovicEdström, Per

Search in DiVA

By author/editor
Gustafsson Coppel, LudovicEdström, Per
By organisation
Department of Natural Sciences, Engineering and Mathematics
Paper, Pulp and Fiber Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 811 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 608 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf