miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Spectral response of Pixellated Semiconductor X-ray Detectors
Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media. (STC)ORCID iD: 0000-0002-8325-5177
Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.ORCID iD: 0000-0002-3790-0729
Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media. (STC)
2005 (English)In: 2005 IEEE Nuclear Science Symposium Conference Record, Vols 1-5, IEEE , 2005, Vol. 5, 2967-2970 p., 1596954Conference paper, (Refereed)
Abstract [en]

X-ray imaging with energy resolution can be performed using a detector matrix bonded to a photon counting CMOS readout circuit as the MEDIPIX2 chip. In previous experiments it has been shown that charge sharing between neighboring pixels plays an important role in the formation of the image and especially for the spectral information in the image. Charge sharing is caused both by the localization of the initial energy deposition and by diffusion during the transport of the charge to the readout electrode. In this work we have studied different factors that can effect the energy resolution in pixellated X-ray imaging detectors. Results are compared to experimental data.

Place, publisher, year, edition, pages
IEEE , 2005. Vol. 5, 2967-2970 p., 1596954
Series
IEEE NUCLEAR SCIENCE SYMPOSIUM - CONFERENCE RECORD, ISSN 1082-3654
Keyword [en]
Medipix, Charge transport, Semiconductor materials, X-ray fluorescence, X-ray image sensors
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:miun:diva-366DOI: 10.1109/NSSMIC.2005.1596954ISI: 000241851904120Scopus ID: 2-s2.0-33846640180Local ID: 4199ISBN: 0-7803-9221-3 (print)OAI: oai:DiVA.org:miun-366DiVA: diva2:1983
Conference
Nuclear Science Symposium/Medical Imaging Conference, Oct 23-29, 2005, Fajardo, PR
Available from: 2008-12-11 Created: 2008-12-11 Last updated: 2016-10-05Bibliographically approved
In thesis
1. Characterisation and application of photon counting X-ray detector systems
Open this publication in new window or tab >>Characterisation and application of photon counting X-ray detector systems
2007 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis concerns the development and characterisation of X-ray imaging systems based on single photon processing. “Colour” X-ray imaging opens up new perspectives within the fields of medical X-ray diagnosis and also in industrial X-ray quality control. The difference in absorption for different “colours” can be used to discern materials in the object. For instance, this information might be used to identify diseases such as brittle-bone disease. The “colour” of the X-rays can be identified if the detector system can process each X-ray photon individually. Such a detector system is called a “single photon processing” system or, less precise, a “photon counting system”.

With modern technology it is possible to construct photon counting detector systems that can resolve details to a level of approximately 50 µm. However with such small pixels a problem will occur. In a semiconductor detector each absorbed X-ray photon creates a cloud of charge which contributes to the image. For high photon energies the size of the charge cloud is comparable to 50 µm and might be distributed between several pixels in the image. Charge sharing is a key problem since, not only is the resolution degenerated, but it also destroys the “colour” information in the image.

This thesis presents characterisation and simulations to provide a detailed understanding of the physical processes concerning charge sharing in detectors from the MEDIPIX collaboration. Charge summing schemes utilising pixel to pixel communications are proposed. Charge sharing can also be suppressed by introducing 3D-detector structures. In the next generation of the MEDIPIX system, Medipix3, charge summing will be implemented. This system, equipped with a 3D-silicon detector, or a thin planar high-Z detector of good quality, has the potential to become a commercial product for medical imaging. This would be beneficial to the public health within the entire European Union.

Abstract [sv]

Denna avhandling berör utveckling och karaktärisering av fotonräknande röntgensystem. ”Färgröntgen” öppnar nya perspektiv för medicinsk röntgendiagnostik och även för materialröntgen inom industrin. Skillnaden i absorption av olika ”färger” kan användas för att särskilja olika material i ett objekt. Färginformationen kan till exempel användas i sjukvården för att identifiera benskörhet. Färgen på röntgenfotonen kan identifieras om detektorsystemet kan detektera varje foton individuellt. Sådana detektorsystem kallas ”fotonräknande” system.

Med modern teknik är det möjligt att konstruera fotonräknande detektorsystem som kan urskilja detaljer ner till en upplösning på circa 50 µm. Med så små pixlar kommer ett problem att uppstå. I en halvledardetektor ger varje absorberad foton upphov till ett laddningsmoln som bidrar till den erhållna bilden. För höga fotonenergier är storleken på laddningsmolnet jämförbar med 50 µm och molnet kan därför fördelas över flera pixlar i bilden. Laddningsdelning är ett centralt problem delvis på grund av att bildens upplösning försämras, men framför allt för att färginformationen i bilden förstörs.

Denna avhandling presenterar karaktärisering och simulering för att ge en mer detaljerad förståelse för fysikaliska processer som bidrar till laddningsdelning i detektorer från MEDIPIX-projekter. Designstrategier för summering av laddning genom kommunikation från pixel till pixel föreslås. Laddningsdelning kan också begränsas genom att introducera detektorkonstruktioner i 3D-struktur. I nästa generation av MEDIPIX-systemet, Medipix3, kommer summering av laddning att vara implementerat. Detta system, utrustat med en 3D-detektor i kisel, eller en tunn plan detektor av högabsorberande material med god kvalitet, har potentialen att kunna kommersialiseras för medicinska röntgensystem. Detta skulle bidra till bättre folkhälsa inom hela Europeiska Unionen.

Place, publisher, year, edition, pages
Sundsvall: Mid Sweden Univ, 2007
Series
Mid Sweden University doctoral thesis, ISSN 1652-893X ; 26
Keyword
Monte Carlo simulation, Three-dimensional, X-ray flouriscence, Charge transport, Semiconductor materials, Image sensors, CdTe, Photon counting, Synchrotron radiation, Material recognition, X-ray, Pixel Detector, Silicon, Charge sharing, Imaging, Medipix, Spectroscopy, Dental diagnosis, Image quality, Energy weighting
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:miun:diva-38 (URN)978-91-85317-55-4 (ISBN)
Public defence
2007-06-01, O102, Kornboden, Holmgatan 10, Sundsvall, 10:15 (English)
Opponent
Supervisors
Available from: 2007-11-23 Created: 2007-11-23 Last updated: 2011-02-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopushttp://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=33583&arnumber=1596954&count=139&index=119

Search in DiVA

By author/editor
Fröjdh, ChristerNilsson, Hans-ErikNorlin, Börje
By organisation
Department of Information Technology and Media
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 453 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf