miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Spectroscopy applications for the Medipix photon counting X-ray system
Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.ORCID iD: 0000-0002-3790-0729
Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.ORCID iD: 0000-0002-8325-5177
2004 (English)In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, Vol. 531, no 1-2, 251-257 p.Article in journal (Refereed) Published
Abstract [en]

Since the Medipix system is a photon counting system, it is possible to use it as a spectroscopic device, which is sensitive to the energy of the incoming photons. The system can, for example, be used to achieve the spectrum of an unknown source. Since it is an imaging system, it can be useful for energy dependent scattering experiments. The factors limiting the spectroscopic resolution are source and channel noise and detector non-uniformity. A well-known method for correction non-uniformity is to use mono energetic source and a threshold adjustment. However, since the threshold calibration is energy dependent, its use for sources with wider energy range is limited. We have shown an easy method to create threshold calibration masks for different thresholds that include both detector and channel stationary influences with analysis of histograms of series of images. The model for histograms was created assuming a standard dental X-ray source, which allows finding mask-creating parameters like threshold range (Vth and Vthadj). This procedure can be performed for each energy of interest. Based on these arrays, mask files that narrowed the threshold distribution close to the theoretical limit, were prepared. The limit of the spectroscopic resolution for the system was measured by analysing histograms for series of flat images under identical conditions.

Place, publisher, year, edition, pages
ELSEVIER SCIENCE BV , 2004. Vol. 531, no 1-2, 251-257 p.
Keyword [en]
X-ray, Imaging; Pixel detector; Medipix, Spectroscopy
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:miun:diva-363DOI: 10.1016/j.nima.2004.06.013ISI: 000224233400036Local ID: 1676OAI: oai:DiVA.org:miun-363DiVA: diva2:1980
Conference
5th International Workshop on Radiation Imaging Detectors, Sep 07-11, 2003, Riga, latvia
Note
5th International Workshop on Radiation Imaging Detectors, Sep 07-11, 2003, Riga, LatviaAvailable from: 2008-12-11 Created: 2008-12-11 Last updated: 2016-10-05Bibliographically approved
In thesis
1. Characterisation and application of photon counting X-ray detector systems
Open this publication in new window or tab >>Characterisation and application of photon counting X-ray detector systems
2007 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis concerns the development and characterisation of X-ray imaging systems based on single photon processing. “Colour” X-ray imaging opens up new perspectives within the fields of medical X-ray diagnosis and also in industrial X-ray quality control. The difference in absorption for different “colours” can be used to discern materials in the object. For instance, this information might be used to identify diseases such as brittle-bone disease. The “colour” of the X-rays can be identified if the detector system can process each X-ray photon individually. Such a detector system is called a “single photon processing” system or, less precise, a “photon counting system”.

With modern technology it is possible to construct photon counting detector systems that can resolve details to a level of approximately 50 µm. However with such small pixels a problem will occur. In a semiconductor detector each absorbed X-ray photon creates a cloud of charge which contributes to the image. For high photon energies the size of the charge cloud is comparable to 50 µm and might be distributed between several pixels in the image. Charge sharing is a key problem since, not only is the resolution degenerated, but it also destroys the “colour” information in the image.

This thesis presents characterisation and simulations to provide a detailed understanding of the physical processes concerning charge sharing in detectors from the MEDIPIX collaboration. Charge summing schemes utilising pixel to pixel communications are proposed. Charge sharing can also be suppressed by introducing 3D-detector structures. In the next generation of the MEDIPIX system, Medipix3, charge summing will be implemented. This system, equipped with a 3D-silicon detector, or a thin planar high-Z detector of good quality, has the potential to become a commercial product for medical imaging. This would be beneficial to the public health within the entire European Union.

Abstract [sv]

Denna avhandling berör utveckling och karaktärisering av fotonräknande röntgensystem. ”Färgröntgen” öppnar nya perspektiv för medicinsk röntgendiagnostik och även för materialröntgen inom industrin. Skillnaden i absorption av olika ”färger” kan användas för att särskilja olika material i ett objekt. Färginformationen kan till exempel användas i sjukvården för att identifiera benskörhet. Färgen på röntgenfotonen kan identifieras om detektorsystemet kan detektera varje foton individuellt. Sådana detektorsystem kallas ”fotonräknande” system.

Med modern teknik är det möjligt att konstruera fotonräknande detektorsystem som kan urskilja detaljer ner till en upplösning på circa 50 µm. Med så små pixlar kommer ett problem att uppstå. I en halvledardetektor ger varje absorberad foton upphov till ett laddningsmoln som bidrar till den erhållna bilden. För höga fotonenergier är storleken på laddningsmolnet jämförbar med 50 µm och molnet kan därför fördelas över flera pixlar i bilden. Laddningsdelning är ett centralt problem delvis på grund av att bildens upplösning försämras, men framför allt för att färginformationen i bilden förstörs.

Denna avhandling presenterar karaktärisering och simulering för att ge en mer detaljerad förståelse för fysikaliska processer som bidrar till laddningsdelning i detektorer från MEDIPIX-projekter. Designstrategier för summering av laddning genom kommunikation från pixel till pixel föreslås. Laddningsdelning kan också begränsas genom att introducera detektorkonstruktioner i 3D-struktur. I nästa generation av MEDIPIX-systemet, Medipix3, kommer summering av laddning att vara implementerat. Detta system, utrustat med en 3D-detektor i kisel, eller en tunn plan detektor av högabsorberande material med god kvalitet, har potentialen att kunna kommersialiseras för medicinska röntgensystem. Detta skulle bidra till bättre folkhälsa inom hela Europeiska Unionen.

Place, publisher, year, edition, pages
Sundsvall: Mid Sweden Univ, 2007
Series
Mid Sweden University doctoral thesis, ISSN 1652-893X ; 26
Keyword
Monte Carlo simulation, Three-dimensional, X-ray flouriscence, Charge transport, Semiconductor materials, Image sensors, CdTe, Photon counting, Synchrotron radiation, Material recognition, X-ray, Pixel Detector, Silicon, Charge sharing, Imaging, Medipix, Spectroscopy, Dental diagnosis, Image quality, Energy weighting
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:miun:diva-38 (URN)978-91-85317-55-4 (ISBN)
Public defence
2007-06-01, O102, Kornboden, Holmgatan 10, Sundsvall, 10:15 (English)
Opponent
Supervisors
Available from: 2007-11-23 Created: 2007-11-23 Last updated: 2011-02-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Manuilskiy, AnatoilyNorlin, BörjeNilsson, Hans-ErikFröjdh, Christer
By organisation
Department of Information Technology and Media
In the same journal
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 332 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf