Mid Sweden University

miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Clustering-based Differential Evolution Boosted by a Regularisation-based Objective Function and a Local Refinement for Neural Network Training
2022 (English)In: 2022 IEEE Congress on Evolutionary Computation (CEC), Institute of Electrical and Electronics Engineers (IEEE) , 2022Conference paper, Oral presentation with published abstract (Refereed)
Abstract [en]

The performance of feed-forward neural networks (FFNN) is directly dependant on the training algorithm. Conventional training algorithms such as gradient-based approaches are so popular for FFNN training, but they are susceptible to get stuck in local optimum. To overcome this, population-based metaheuristic algorithms such as differential evolution (DE) are a reliable alternative. In this paper, we propose a novel training algorithm, Reg-IDE, based on an improved DE algorithm. Weight regularisation in conventional algorithms is an approach to reduce the likelihood of over-fitting and enhance generalisation. However, to the best of our knowledge, the current DE-based trainers do not employ regularisation. This paper, first, proposes a regularisation-based objective function to improve the generalisation of the algorithm by adding a new term to the objective function. Then, a region-based strategy determines some regions in search space using a clustering algorithm and updates the population based on the information available in each region. In addition, quasi opposition-based learning enhances the exploration of the algorithm. The best candidate solution found by improved DE is then used as the initial network weights for the Levenberg-Marquardt (LM) algorithm, as a local refinement. Experimental results on different benchmarks and in comparison with 26 conventional and population-based approaches apparently demonstrate the excellent performance of Reg-IDE.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE) , 2022.
National Category
Computer Engineering
Identifiers
URN: urn:nbn:se:miun:diva-52364DOI: 10.1109/CEC55065.2022.9870211Scopus ID: 2-s2.0-85138718156ISBN: 978-1-6654-6708-7 (print)OAI: oai:DiVA.org:miun-52364DiVA, id: diva2:1894861
Conference
IEEE Congress on Evolutionary Computation (CEC 2022)
Available from: 2024-09-04 Created: 2024-09-04 Last updated: 2025-04-04Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Seyed Jalaleddin, Mousavirad

Search in DiVA

By author/editor
Seyed Jalaleddin, Mousavirad
Computer Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 8 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf