Mid Sweden University

miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effektivisering av Tillverkningsprocesser med Artificiell Intelligens: Minskad Materialförbrukning och Förbättrad Kvalitetskontroll
Mid Sweden University, Faculty of Science, Technology and Media, Department of Communication, Quality Management, and Information Systems (2023-).
Mid Sweden University, Faculty of Science, Technology and Media, Department of Communication, Quality Management, and Information Systems (2023-).
2024 (Swedish)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

This report explores the implementation of AI techniques in the manufacturing process at Ovako, focusing on process optimization, individual traceability, and quality control. By integrating advanced AI models and techniques at various levels within the production process, Ovako can improve efficiency, reduce material consumption, and prevent production stops. For example, predictive maintenance can be applied to anticipate and prevent machine problems, while image recognition algorithms and optical character recognition enable individual traceability of each rod throughout the process. Furthermore, AI-based quality control can detect defects and deviations with high precision and speed, leading to reduced risk of faulty products and increased product quality. By carefully considering the role of the workforce, safety and ethical issues, and the benefits and challenges of AI implementation, Ovako can maximize the benefits of these techniques and enhance its competitiveness in the market.

Abstract [sv]

Denna rapport utforskar implementeringen av AI-tekniker i tillverkningsprocessen hos Ovako, med fokus på processoptimering, individuell spårbarhet och kvalitetskontroll. Genom att integrera avancerade AI-modeller och tekniker på olika nivåer inom produktionsprocessen kan Ovako förbättra effektiviteten, minska materialförbrukningen och förhindra produktionsstopp. Exempelvis kan prediktivt underhåll tillämpas för att förutse och förebygga maskinproblem, medan bildigenkänningsalgoritmer och optisk teckenigenkänning möjliggör individuell spårbarhet av varje stång genom processen. Dessutom kan AI-baserad kvalitetskontroll detektera defekter och avvikelser med hög precision och hastighet, vilket leder till minskad risk för felaktiga produkter och ökad produktkvalitet. Genom att noggrant överväga arbetskraftens roll, säkerhets- och etikfrågor samt fördelarna och utmaningarna med AI-implementeringen kan Ovako maximera nyttan av dessa tekniker och förbättra sin konkurrenskraft på marknaden.

Place, publisher, year, edition, pages
2024. , p. 52
Keywords [en]
Process and system development, AI, industrial economics, AI models, production, optimization, industry, Machine learning, Deep Learning, Image recognition, Optical character recognition (OCR), Quality control, Manufacturing processes, Bottlenecks, Production flow, Defect detection, Explainable AI (XAI), Industrial AI, Efficiency in production
Keywords [sv]
Process-och systemutveckling, AI, industriell ekonomi, AImodeller, produktion, optimering, industri, Maskininlärning, Deep Learning, Bildigenkänning, Optisk teckenigenkänning (OCR), Kvalitetskontroll, Tillverkningsprocesser, Flaskhalsar, Produktionsflöde, Defektdetektering, Explainable AI (XAI), Industriell AI, Effektivitet i produktion
National Category
Other Engineering and Technologies
Identifiers
URN: urn:nbn:se:miun:diva-51840OAI: oai:DiVA.org:miun-51840DiVA, id: diva2:1880827
Subject / course
Industrial Organization and Economy IE1
Educational program
Master of Science in Industrial Engineering and Management TINDA 300 higher education credits
Supervisors
Examiners
Available from: 2024-07-02 Created: 2024-07-02 Last updated: 2025-02-10Bibliographically approved

Open Access in DiVA

fulltext(616 kB)102 downloads
File information
File name FULLTEXT01.pdfFile size 616 kBChecksum SHA-512
0eb1b253b656461592fef6cac12d23f5ffeccc00ac456e7048fa10aaacb956cf5a4418802731b3118bf011c051f01ecc3863c8a1c6c816891e2849678ec00c40
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Al-Saaid, KasimHolm, Daniel
By organisation
Department of Communication, Quality Management, and Information Systems (2023-)
Other Engineering and Technologies

Search outside of DiVA

GoogleGoogle Scholar
Total: 102 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 396 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf