Mid Sweden University

miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Comparative Analysis of Convolutional Neural Network (CNN) Architectures for Content Restriction
Mid Sweden University, Faculty of Science, Technology and Media, Department of Computer and Electrical Engineering (2023-).
2024 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [sv]

Ökningen av sociala medieanvändare har introducerat betydande utmaningar i att hantera de stora mängder data som delas, särskilt bilder. Med mer än 63% av världens befolkning som använder sociala medieplattformar, har behovet av effektiv innehållsbegränsning blivit kritiskt. Manuell moderering är inte längre praktisk på grund av den stora mängden innehåll. Denna studie adresserar det kritiska problemet med bildbegränsning genom att utvärdera prestandan hos avancerade bildklassificeringsmodeller, specifikt VGG16 och Inception_v3 konvolutionella neurala nätverk (CNNs). För att möta denna utmaning använder studien CIFAR-10 datasetet, vilket är allmänt känt som ett riktmärkesdataset inom bildklassificeringsforskning. Forskningen innebär att implementera förtränade modeller och genomföra en omfattande jämförelse med olika prestandamått, inklusive noggrannhet, precision, återkallning, F1-poäng, förväxlingsmatris, ROC-kurva och AUC. Dessa mått ger en omfattande utvärdering av modellens förmåga att korrekt klassificera bilder. Vidare inkluderar studien en finjusteringsfas efter den inledande jämförelsen för att ytterligare förbättra modellens prestanda. Detta innebär att justera parametrarna i den förtränade modellen för att bättre passa de specifika egenskaperna hos CIFAR-10 datasetet. Efter finjusteringen genomförs ytterligare en jämförande analys för att bedöma förbättringarna och fastställa den mest effektiva modellen. Resultaten visar att både VGG16 och Inception_V3 visade betydande förbättringar i prestanda efter finjustering, med märkbara ökningar i noggrannhet och andra mått. Emellertid visade VGG16 bättre övergripande prestanda, vilket gör den till den föredragna modellen för denna applikation. Huvudsyftet med denna forskning är att identifiera den mest effektiva modellen för bildklassificering och därigenom etablera ett fundamentalt konceptbevis för användningen av konvolutionella neurala nätverk (CNNs) i innehållsbegränsning på sociala medieplattformar.

Abstract [en]

The increase in social media usage has introduced significant challenges in managing the large amounts of data being shared, particularly images. With more than 63% of the global population using social media platforms, the need for effective content restriction has become critical. Manual moderation is no longer practical due to the large amount of content. This thesis addresses the critical issue of image restriction by evaluating the performance of advanced image classification models, specifically VGG16 and Inception_v3 Convolutional Neural Networks (CNNs). In order to address this challenge, the study utilizes the CIFAR-10 dataset, which is widely known as a benchmark dataset in image classification research. The research involves implementing pre-trained models and conducting a comprehensive comparison using various performance metrics, including Accuracy, Precision, Recall, F1 Score, Confusion Matrix, ROC Curve, and AUC. These metrics provide a comprehensive evaluation of the model's ability to accurately classify images. Furthermore, the study includes a fine-tuning phase after the initial comparison to further improve the model's performance. This involves adjusting the parameters of the pre-trained model to better suit the specific characteristics of the CIFAR-10 dataset. Following the finetuning, another round of comparative analysis is conducted to assess the improvements and determine the most effective model. The results demonstrate that both VGG16 and Inception_V3 showed significant improvements in performance after fine-tuning, with notable increases in accuracy and other metrics. However, VGG16 showed a better overall performance, making it the preferred model for this application. The primary objective of this research is to identify the most effective model for image classification, thereby establishing a foundational proof of concept for the application of Convolutional Neural Networks (CNNs) in content restriction on social media platforms.

Place, publisher, year, edition, pages
2024. , p. 50
Keywords [en]
CNNs, VGG16, Inception_V3, CIFAR-10
Keywords [sv]
CNNs, VGG16, Inception_V3, CIFAR-10
National Category
Software Engineering
Identifiers
URN: urn:nbn:se:miun:diva-51805Local ID: DT-V24-G3-037OAI: oai:DiVA.org:miun-51805DiVA, id: diva2:1879070
Subject / course
Computer Engineering DT1
Educational program
Computer Science TDATG 180 higher education credits
Supervisors
Examiners
Available from: 2024-06-27 Created: 2024-06-27 Last updated: 2024-06-27Bibliographically approved

Open Access in DiVA

fulltext(2209 kB)142 downloads
File information
File name FULLTEXT01.pdfFile size 2209 kBChecksum SHA-512
346450a60d2c6d29e8e511fc0bda4d44cf3a19e75010a8514592d330797e6a056ec8c0ae2e027535a329030347d500451eeaa00be7370d4eb4b6f09592b22f1f
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Daher, Abdulhadi
By organisation
Department of Computer and Electrical Engineering (2023-)
Software Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 142 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 46 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf