Mid Sweden University

miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Analyzing Image Classification in Decentralized Environments via Advanced Federated Learning
Mid Sweden University, Faculty of Science, Technology and Media, Department of Computer and Electrical Engineering (2023-).
2024 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [sv]

Detta arbete syftar till att undersöka effektiviteten av federated learning (FL) för bildklassificering i decentraliserade databehandlingsmiljöer. Med den ökande mängden av datagenerering från mobil- och ‘edge computing’, särskilt bilddata, så finns ett behov av att förbättra metoderna för bildklassificering. Dessa metoder bör inte bara adressera de utmaningar som ställs av traditionella centraliserade djupinlärningsmodeller, utan även värna om integriteten, minska kommunikationskostnaderna och övervinna skalbarhetshinder. Federated learning erbjuder en lovande lösning som tillhandahåller en ram för modellträning över decentraliserade noder med fokus på datasekretess. Denna studie analyserar FL Förmåga att förbättra bildklassificering med dess distinkta metoder, jämför dess prestanda med konventionella modeller, och granskar dess vidare implikationer och begränsningar i praktiska, verkliga inställningar. Resultatet av denna studie visar att med lämplig hantering av brus kan FL-modeller uppnå jämförbar noggrannhet med traditionella metoder, där datasekretessen förbättras betydelsefull. Vilket demonstrerar en potential balans mellan prestanda och skydd av integritet i decentraliserade miljöer.

Abstract [en]

This study aims to explore the effectiveness of Federated Learning (FL) in image classification across decentralized computing environments. With the increasing amount of data generated from mobile and edge computing, particularly image data, there is a need to improve image classification methods that not only address the challenges posed by traditional centralized deep learning models but also respect privacy, reduce communication costs, and overcome scalability barriers. Federated Learning is a promising solution that offers a framework for model training across decentralized nodes with a focus on data privacy. This study analyzes FL's capabilities to enhance image classification using its distinct methodologies, compares its performance with conventional models, and examines its wider implications and limitations in practical, real-world settings. The result of the study indicates that with appropriate noise management, FL models can achieve comparable accuracy to traditional approaches while significantly enhancing data privacy. which demonstrates a potential balance between performance and privacy protection in decentralized environments.

Place, publisher, year, edition, pages
2024. , p. 52
Keywords [en]
Federated Learning, image classification, decentralized environments, deep learning.
Keywords [sv]
Federated learning, bildklassificering, decentraliserade miljöer, djupinlärning.
National Category
Software Engineering
Identifiers
URN: urn:nbn:se:miun:diva-51802Local ID: DT-V24-G3-035OAI: oai:DiVA.org:miun-51802DiVA, id: diva2:1879032
Subject / course
Computer Engineering DT1
Educational program
Computer Science TDATG 180 higher education credits
Supervisors
Examiners
Available from: 2024-06-27 Created: 2024-06-27 Last updated: 2024-06-27Bibliographically approved

Open Access in DiVA

fulltext(1535 kB)89 downloads
File information
File name FULLTEXT01.pdfFile size 1535 kBChecksum SHA-512
26e323d1b39507f917afa00ad2cfe23d92ae030baf2d6bacfe979e51983a1a288770a16fb06c77875e2c19d611752c8e47b0ba3432cc047c33956997a8022abe
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Nordin, Julian
By organisation
Department of Computer and Electrical Engineering (2023-)
Software Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 89 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 81 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf