Mid Sweden University

miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Detection of Rail Clip with YOLO on Raspberry Pi
Mid Sweden University, Faculty of Science, Technology and Media, Department of Computer and Electrical Engineering (2023-).
2024 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [sv]

I en modern värld där artificiell intelligens blir allt mer integrerad i våra dagliga liv är en av de mest grundläggande och nödvändiga färdigheterna för en AI att lära sig och bearbeta information, särskilt genom objektdetektering. Det finns många algoritmer som kan användas för denna specifika uppgift, men vårt huvudsakliga fokus ligger på "You Only Look Ones", även känd som YOLO-algoritmen. Denna studie fördjupar sig i användningen av YOLO inom inbyggda system specifikt för att upptäcka tågrelaterade objekt på en Raspberry Pi. Målet med denna studie är att övervinna begränsningar i processorkraft och minne, typiska för småskaliga databehandlingsplattformar som Raspberry Pi, samtidigt som hög detekteringsnoggrannhet, hastighet och låg energiförbrukning bibehålls. Detta uppnås genom att träna YOLO-modellen med olika bildupplösningar och olika inställningar av hyperparametrar och sedan köra inferens på dem så att energiförbrukningen kan beräknas. Resultaten indikerar att även om lägre upplösningar resulterar i lägre noggrannhet, minskar de avsevärt de beräkningsmässiga kraven på Raspberry Pi, vilket gör det till en genomförbar lösning för realtidsapplikationer i miljöer där tillgången till ström är begränsad.

Abstract [en]

In a modern world where artificial intelligence (AI) is becoming increasingly integrated into our daily lives, one of the most fundamental and essential skills for an AI is to learn and process information especially through object detection. There are many algorithms that could be used for this specific task but our mainly focus is on "You Only Look Ones" aka YOLO algorithm. This study dives into the use of YOLO within embedded systems specifically for detecting train-related objects on a Raspberry Pi. The aim of this study is to overcome limitations in processing power and memory, typical in small-scale computing platforms like Raspberry pi, while maintaining high detection accuracy, fast processing time and low energy consumption. This is achieved by training the YOLO model with different image resolutions and different hyper parameters tuning then running inference on them so that the energy consumption can be calculated. The results indicate that while lower resolutions result in lower accuracy, they significantly reduce the computational demands on the Raspberry Pi, making it a viable solution for real-time applications in environments where power availability is limited

Place, publisher, year, edition, pages
2024. , p. 53
Keywords [en]
YOLO, Object detection, Energy consumption, Raspberry Pi, Image Resolution
Keywords [sv]
YOLO, Objektdetektering, Energiförbrukning, Raspberry Pi, Bildupplösning
National Category
Software Engineering
Identifiers
URN: urn:nbn:se:miun:diva-51680Local ID: DT-V24-G3-016OAI: oai:DiVA.org:miun-51680DiVA, id: diva2:1876911
Subject / course
Computer Engineering DT1
Educational program
Master of Science in Engineering - Computer Engineering TDTEA 300 higher education credits
Supervisors
Examiners
Available from: 2024-06-25 Created: 2024-06-25 Last updated: 2024-06-25Bibliographically approved

Open Access in DiVA

fulltext(3888 kB)192 downloads
File information
File name FULLTEXT01.pdfFile size 3888 kBChecksum SHA-512
b2ba78adbee0c8b6cf7e0c1088880fdb547e493bd3726c02f8038821e2841348761820de550798e4c8ab96965272d5a9e4a67ebdaec2b555986797d37a1434ae
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Shahi, Jonathan
By organisation
Department of Computer and Electrical Engineering (2023-)
Software Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 192 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 332 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf