Mid Sweden University

miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Optimizing YOLOv5 Deployment: A Comparative Study of In-Node and Remote Processing on Edge Devices
Mid Sweden University, Faculty of Science, Technology and Media, Department of Computer and Electrical Engineering (2023-).
2024 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [sv]

Artificiell intelligens utvecklas i snabb takt, och objektdetektering har blivit en central komponent inom detta område. Objektdetektering möjliggör att automatiserade system på ett noggrant sätt kan identifiera och lokalisera objekt i bilder. En av de mest framstående metoderna för detta ändamål är YOLOv5 (You Only Look Once, version 5), känd för sin snabbhet och effektivitet i realtidsapplikationer. Implementeringen av sådan avancerad teknologi på mindre enheter som Raspberry Pi 4 är utmaningar, främst till följd av begränsad processorkraft och energitillgång på dessa små enheter. Denna avhandling undersöker den optimala användningen av YOLOv5- modellen med hänsyn till energieffektivitet och latens i kommunikationen. Dessa aspekter är särskilt kritiska för enheter som kräver hög effektivitet, exempelvis smartphones, drönare och andra portabla enheter. Studien jämför två huvudsakliga tillvägagångssätt: bearbetning direkt på enheten (in-node) och distans utförande på en server. Genom att välja en lämplig metod för processkörning påverkas effektiviteten av objektdetektering i praktiska tillämpningar. Att bearbeta data direkt på enheten kan ge fördelar i form av snabbare svarstid och bättre integritet, eftersom det undviker att skicka data över nätverket. Dock kan detta öka energiförbrukningen och ökad belastning på enheten. Å andra sidan kan remote process, som utnyttjar kraftfulla datorer, förbättra prestandan och minska belastningen på enheten, men detta kan leda till ökad latens och potentiella integritetsproblem. Genom att använda resurser från remote-servern kan arbetsbelastningen på enheter som Raspberry Pi minskas, vilket resulterar i förbättrad energieffektivitet och latens över samtliga testade upplösningar.

Abstract [en]

Artificial intelligence is advancing quickly, and object detection has become a key part of this field. Object detection helps automated systems recognise and object detecting pictures very accurately. One of the best methods for this is YOLOv5 (You Only Look Once, version 5), known for working fast and well in real-time uses. However, using such sophisticated technology on smaller devices like the Raspberry Pi 4 can be challenging. These challenges come mainly from limited processing power and energy availability on such small devices. This thesis explores the best way to use the YOLOv5 model while considering energy efficiency and latency between communication. These aspects are crucial when devices need to be efficient, like smartphones, drones, or other portable devices. The study compares two main ways to set up the system: processing directly on the device (in-node) and processing remotely on a server or in the cloud. Choosing where to process the data affects the effectiveness of object detection in real-world applications. Processing on the device can be better for privacy and speed since it does not need to send data over a network. However, this might use more energy and put more strain on the device. On the other hand, processing remotely can use powerful computers to improve performance and reduce the load on the device, but it might make things slower and raise privacy issues. By using remote server resources, the workload in single-processing devices like Rasberry Pi is drastically reduced, which shows better energy efficiency and latency in all test resolutions.

Place, publisher, year, edition, pages
2024. , p. 53
Keywords [en]
Artificial Intelligence, Edge Computing, Energy Efficiency, Latency, In-Node Processing, Remote Processing, Image Compression
Keywords [sv]
Artificiell Intelligens, Edge Computing, Energieffektivitet, Latens, In-Node process, remote process, Bildkomprimering
National Category
Software Engineering
Identifiers
URN: urn:nbn:se:miun:diva-51650Local ID: DT-V24-G3-019OAI: oai:DiVA.org:miun-51650DiVA, id: diva2:1875981
Subject / course
Computer Engineering DT1
Educational program
Master of Science in Engineering - Computer Engineering TDTEA 300 higher education credits
Supervisors
Examiners
Available from: 2024-06-24 Created: 2024-06-24 Last updated: 2024-06-24Bibliographically approved

Open Access in DiVA

fulltext(1762 kB)174 downloads
File information
File name FULLTEXT01.pdfFile size 1762 kBChecksum SHA-512
21a918b05c048c88026739edb425ebec31a2769ec806b43401a434ac4dd78146967dff257eed88fbeae6555982e99318e21d299555da3a87270ef8991c6c3192
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Wijitchakhorn, Alice
By organisation
Department of Computer and Electrical Engineering (2023-)
Software Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 174 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 186 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf