Mid Sweden University

miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Pre-treatment of textile wastewaters containing Chrysophenine using hybrid membranes
University of Kashan, Kashan, Iran.
2017 (English)In: Membrane Water Treatment, ISSN 2005-8624, Vol. 8, no 1, p. 89-112Article in journal (Refereed) Published
Abstract [en]

Dyeing wastewaters are the most problematic wastewater in textile industries and also, growing amounts of waste fibers in carpet industries have concerned environmental specialists. Among different treatment methods, membrane filtration processes as energy-efficient and compatible way, were utilized for several individual problems. In this research, novel hybrid membranes were prepared by waste fibers of mechanical carpets as useful resource of membrane matrix and industrial graphite powder as filler to eliminate Chrysophenine GX from dyeing wastewater. These membranes were expected to be utilized for first stage of hybrid membrane filtration process including (adsorption-ultrafiltration) and nanofiltration in Kashan Textile Company. For scaling of membrane filtration process, fouling mechanism of these membranes were recognized and explained by the use of genetic algorithm, as well. The graphite increased rejection and diminished permeate flux at low concentration but in high concentration, the performance was significantly worsened. Among all hybrid membranes, 18% wt. waste fibers-1% wt. graphite membrane had the best performance and minimum fouling. The maximum pore size of this optimum membrane was ranged from 16.10 to 18.72 nm 

Place, publisher, year, edition, pages
Techno-Press , 2017. Vol. 8, no 1, p. 89-112
National Category
Chemical Engineering
Identifiers
URN: urn:nbn:se:miun:diva-51076DOI: 10.12989/mwt.2017.8.1.089Scopus ID: 2-s2.0-85010199490OAI: oai:DiVA.org:miun-51076DiVA, id: diva2:1849222
Available from: 2024-04-05 Created: 2024-04-05 Last updated: 2024-04-15Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Seyed Jalaleddin, Mousavirad

Search in DiVA

By author/editor
Seyed Jalaleddin, Mousavirad
Chemical Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf