Mid Sweden University

miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A transfer learning based artificial neural network in geometrical design of textured surfaces for tribological applications
Universidade da Beira Interior, Covilhã, Portugal.
2023 (English)In: Surface Topography: Metrology and Properties, E-ISSN 2051-672X, Vol. 11, no 2, article id 025001Article in journal (Refereed) Published
Abstract [en]

This study aims at introducing the potential to utilise transfer learning methods in the training of artificial neural networks for tribological applications. Artificially enhanced surfaces through surface texturing, as an example, are investigated under hydrodynamic regime of lubrication. The performance of these surface features is assessed in terms of load carrying capacity and friction. A large performance dataset including bearing load carrying capacity and friction is initially obtained for a specific category of textures with rectangular cross-sectional profile through analytical methods. The produced bearing performance are used to train a neural network. This neural network was then trained further by a minimal set of performance measure data from an intended category of textures with triangular cross-sectional profiles. It is shown that the resulting neural network performs with acceptable level of confidence for those intended texture profiles when trained with such relatively low number of performance data points. The results indicate that fast analytical methods can potentially produce a large volume of training datasets, which effectively allows for use of relatively lower number of training data sets from the intended category, where creating data for trainings can be more complex or time consuming. Use of transfer learning method in tribological applications and use of bearing performance parameters, as opposed to bearing design parameters, for training the neural networks are the major novel contributions of this study, which has not hitherto been reported elsewhere.

Place, publisher, year, edition, pages
IOP Publishing , 2023. Vol. 11, no 2, article id 025001
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:miun:diva-51061DOI: 10.1088/2051-672x/acc882Scopus ID: 2-s2.0-85152481307OAI: oai:DiVA.org:miun-51061DiVA, id: diva2:1849194
Available from: 2024-04-05 Created: 2024-04-05 Last updated: 2024-04-11Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Seyed Jalaleddin, Mousavirad

Search in DiVA

By author/editor
Seyed Jalaleddin, MousaviradRahmani, Ramin
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 15 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf