In this paper, we investigate the reconfigurable intelligent surface (RIS)-assisted non-orthogonal multiple access-based backscatter communication (BAC-NOMA) system under Nakagami-m fading channels and element-splitting protocol. To evaluate the system performance, we first approximate the composite channel gain, i.e., the product of the forward and backscatter channel gains, as a Gamma random variable via the central limit theorem (CLT) and method of moments (MoM). Then, by leveraging the obtained results, we derive the closed-form expressions for the ergodic rates of the strong and weak backscatter nodes (BNs). To provide further insights, we conduct the asymptotic analysis in the high signal-to-noise ratio (SNR) regime. Our numerical results show an excellent correlation with the simulation results, validating our analysis, and demonstrate that the desired system performance can be achieved by adjusting the power reflection and element-splitting coefficients. Moreover, the results reveal the significant performance gain of the RIS-assisted BAC-NOMA system over the conventional BAC-NOMA system.