Most Powder Bed Fusion (PBF) methods for the Additive Manufacturing (AM) of metals are based on manufacturing components by the melting of powder feedstock of one kind; either of pure-elemental or pre-alloyed compositions. Although the AM of multi-materials has recently gained a lot of attention, it is still not commercially available for metal PBF. In Electron-beam based PBF (EB-PBF) it is possible to control precisely the beam parameters such as speed, spot size and current in each site of the build area. By doing this for each manufactured layer, the melting and solidification process can be steered throughout the build. This opens great possibilities for adaptive processes that allows melting of feedstock powders of different nature in the same build. In this investigation, different steel-based powders are used to create metal-metal multimaterials, including stainless-, hot-work and cold-work tool steels. In the proposed approach, each of the two hoppers is loaded with different metal feedstock so that the fetching can be steered to dispense each specific powder into the bed layer-by-layer. By doing so, the process was steered to obtain multimaterials with lamellar, sandwich-like, and compositionally graded configurations. The microstructure and micromechanical properties of the obtained specimens were characterized by microscopic techniques and nanoindentation.