Mid Sweden University

miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A facile route for concurrent fabrication and surface selective functionalization of cellulose nanofibers by lactic acid mediated catalysis
Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Mathematics, and Science Education (2023-).
Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Mathematics, and Science Education (2023-).
Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Mathematics, and Science Education (2023-).
Show others and affiliations
2023 (English)In: Scientific Reports, E-ISSN 2045-2322, Vol. 13, no 1, article id 14730Article in journal (Refereed) Published
Abstract [en]

Celulose nanofibers are lightweight, recycable, biodegradable, and renewable. Hence, there is a great interest of using them instead of fossil-based components in new materials and biocomposites. In this study, we disclose an environmentally benign (green) one-step reaction approach to fabricate lactic acid ester functionalized cellulose nanofibrils from wood-derived pulp fibers in high yields. This was accomplished by converting wood-derived pulp fibers to nanofibrillated “cellulose lactate” under mild conditions using lactic acid as both the reaction media and catalyst. Thus, in parallel to the cellulose nanofibril production, concurrent lactic acid-catalyzed esterification of lactic acid to the cellulose nanofibers surface occured. The direct lactic acid esterification, which is a surface selective functionalization and reversible (de-attaching the ester groups by cleavage of the ester bonds), of the cellulose nanofibrils was confirmed by low numbers of degree of substitution, and FT-IR analyses. Thus, autocatalytic esterification and cellulose hydrolysis occurred without the need of metal based or a harsh mineral acid catalysts, which has disadvantages such as acid corrosiveness and high recovery cost of acid. Moreover, adding a mineral acid as a co-catalyst significantly decreased the yield of the nanocellulose. The lactic acid media is successfully recycled in multiple reaction cycles producing the corresponding nanocellulose fibers in high yields. The disclosed green cellulose nanofibril production route is industrial relevant and gives direct access to nanocellulose for use in variety of applications such as sustainable filaments, composites, packaging and strengthening of recycled fibers. 

Place, publisher, year, edition, pages
Springer Nature , 2023. Vol. 13, no 1, article id 14730
National Category
Paper, Pulp and Fiber Technology
Identifiers
URN: urn:nbn:se:miun:diva-49330DOI: 10.1038/s41598-023-41989-3PubMedID: 37679445Scopus ID: 2-s2.0-85170181889OAI: oai:DiVA.org:miun-49330DiVA, id: diva2:1798328
Available from: 2023-09-19 Created: 2023-09-19 Last updated: 2024-12-05Bibliographically approved
In thesis
1. Sustainable Engineering, Click Chemistry and Catalysis: Modification, Fabrication and Application of Cellulosic Materials
Open this publication in new window or tab >>Sustainable Engineering, Click Chemistry and Catalysis: Modification, Fabrication and Application of Cellulosic Materials
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Due to challenges such as sustainability and increasing carbon footprint, there is a growing demand to replace fossil-based materials with green sustainable alternatives like cellulosic materials. However, unmodified cellulosic materials often encounter issues like high wettability and low mechanical strength that limit their applicability. To overcome these drawbacks, functionalization and modification are crucial and inevitable. Reported methods often involve toxic/harsh conditions or reagents, and multi-step processes. The focus of this thesis is on the fabrication, functionalization, and modification of cellulosic materials through facile and eco-friendly approaches to enhance their properties and broaden their potential applications.

We started with immobilizing copper nanoparticles on controlled pore glass substrate and used it as a recyclable heterogenous catalyst for the copper-catalyzed alkyne-azide cycloaddition (CuAAC). Focusing on sustainability, we also employed cellulosic materials as catalyst supports. First, cellulose was functionalized using a mild organocatalytic approach. Then, copper or palladium nanoparticles were immobilized onto the functionalized cellulose and used as effective recyclable heterogeneous catalysts in different reactions.

Direct esterification of CNC materials with thioglycolic acid was performed enabling us to introduce thiol groups onto CNC materials. The reaction occurred under mild conditions using natural nontoxic organic acid as an organocatalyst. The method was applied on different CNC materials, producing the corresponding thiol-functionalized CNC materials. The thiol-functionalized CNC was used as a heterogeneous recyclable reducing agent to reduce Cu(II) to Cu(I), which is the active form of copper in CuAAC. The prepared thiol-functionalized CNC materials further functionalized with attaching UV active molecules via thiol-ene click chemistry.

Lactic acid (LA) functionalized CNFs were prepared by using an ecofriendly one-step reaction method in high yields. This was achieved by converting pulp fibers into nanofibrillated cellulose lactate under mild conditions, using LA as both reaction media and catalyst. The process was concurrent and involved an autocatalytic esterification reaction without using metal-based or harsh acid catalysts. Moreover, the LA media were recycled and reused in multiple reaction cycles. 

In the fourth study, strong hydrophobic cellulosic materials were prepared via a facile, scalable and eco-friendly method. The method involves a betulin treatment and hot-pressing processes. First, a water-based betulin formulation was developed and used for the treatment of cellulosic materials. The betulin-treated samples were then hot-pressed. Hot-pressing altered the morphologies and led to dense structures. Moreover, it caused a polymorphic transformation of the betulin particles. Water contact angle and tensile tests revealed that the applied betulin/hot-pressing treatment method noticeably enhanced the samples’ hydrophobicities as well as their tensile strengths. Furthermore, a synergistic effect was noticed between the hot-pressing, betulin treatment, and sulfonation during the pulping process.

Densified and strong large veneers were fabricated via a facile and scalable method. The method involves a combination of chemical modifications of aspen veneers followed by hot-pressing. The study showed that hot-pressing enhanced the tensile strengths. The chemical modifications further improved the efficiency of the hot-pressing, resulting in higher tensile strengths. The chemical modifications changed the wood’s composition promoting wood softening and increasing the bonding. Since the method uses convenient and mild treatments combined with continuous hot-pressing, it enables the processing of large samples. It can also lower time/energy consumption, production costs and the environmental impact.

Place, publisher, year, edition, pages
Sundsvall: Mid Sweden University, 2025. p. 112
Series
Mid Sweden University doctoral thesis, ISSN 1652-893X ; 416
National Category
Chemical Engineering Materials Engineering Chemical Sciences Materials Chemistry Organic Chemistry
Identifiers
urn:nbn:se:miun:diva-53250 (URN)978-91-89786-87-5 (ISBN)
Public defence
2025-01-23, C312, Holmgatan 10, Sundsvall, 10:00 (English)
Opponent
Supervisors
Note

Vid tidpunkten för disputationen var följande delarbete opublicerat: delarbete 5 (manuskript).

At the time of the doctoral defence the following paper was unpublished: paper 5 (manuscript).

Available from: 2024-12-10 Created: 2024-12-05 Last updated: 2024-12-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Abbaszad Rafi, AbdolrahimAlimohammadzadeh, RanaCordova, Armando

Search in DiVA

By author/editor
Abbaszad Rafi, AbdolrahimAlimohammadzadeh, RanaCordova, Armando
By organisation
Department of Engineering, Mathematics, and Science Education (2023-)
In the same journal
Scientific Reports
Paper, Pulp and Fiber Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 337 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf