Mid Sweden University

miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Leveraging Acoustic Emission and Machine Learning for Concrete Materials Damage Classification on Embedded Devices
Mid Sweden University, Faculty of Science, Technology and Media, Department of Computer and Electrical Engineering (2023-).
Mid Sweden University, Faculty of Science, Technology and Media, Department of Computer and Electrical Engineering (2023-).
Mid Sweden University, Faculty of Science, Technology and Media, Department of Computer and Electrical Engineering (2023-).ORCID iD: 0000-0002-8382-0359
Mid Sweden University, Faculty of Science, Technology and Media, Department of Computer and Electrical Engineering (2023-).ORCID iD: 0000-0001-9572-3639
2023 (English)In: IEEE Transactions on Instrumentation and Measurement, ISSN 0018-9456, E-ISSN 1557-9662, Vol. 72, article id 2525108Article in journal (Refereed) Published
Abstract [en]

For the field of structural health monitoring (SHM), acoustic emission (AE) technology is important as a damage identification technique that does not cause secondary damage to concrete. Nowadays, applications of non-destructive concrete damage identification are mostly limited to commercial software or identification algorithms running on desktop computers. It has so far not been deployed in low-power embedded devices. In this study, a lightweight convolutional neural network (CNN) model for online non-destructive damage type recognition of concrete materials is presented and deployed on a resource-constrained microcontroller unit as a tiny machine learning (TinyML) application. The CNN model uses raw acoustic emission signals as input and damage recognition types as output. 15,000 acoustic emission signals are used as data sets divided into training, validation, and test sets in the ratio of 8:1:1. The experimental results show that an accuracy of 99.6% is achieved on the nRF52840 microcontroller (ARM Cortex M4) with only 166.822 ms and 0.555mJ for a single inference using only 20K parameters and 30.5KB model size. This work demonstrates the effectiveness and feasibility of the proposed model, which achieves a trade-off between high classification accuracy and deployability on resource-constrained MCUs. Consequently, it provides strong support for online continuous non-destructive structural health monitoring. 

Place, publisher, year, edition, pages
IEEE, 2023. Vol. 72, article id 2525108
Keywords [en]
Acoustic emission, acoustic emissions, Convolution, Convolutional neural networks, damage classification, Data models, embedded systems, Monitoring, Non-destructive testing, structural health monitoring, Testing, TinyML, Training
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:miun:diva-49234DOI: 10.1109/TIM.2023.3307751ISI: 001063248800019Scopus ID: 2-s2.0-85168744324OAI: oai:DiVA.org:miun-49234DiVA, id: diva2:1794333
Available from: 2023-09-05 Created: 2023-09-05 Last updated: 2024-05-13Bibliographically approved
In thesis
1. Tiny Machine Learning for Structural Health Monitoring with Acoustic Emissions
Open this publication in new window or tab >>Tiny Machine Learning for Structural Health Monitoring with Acoustic Emissions
2024 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Acoustic Emission (AE) technology, as one of the non-destructive Structural Health Monitoring (SHM) methods, is increasingly utilized for the damage prediction, classification, maintenance, and real-time monitoring of infrastructure. Addressing the need for low latency, power consumption and high portability, a novel approach has been adopted where processing algorithms are embedded close to the sensors on these devices. Continuous data monitoring and collection, coupled with data processing and interpretation comparable to human experts, are anticipated from the next generation of the Internet of Things and smart sensing systems. While Machine Learning (ML) and Deep Learning (DL) has been successfully applied in a number of domains including SHM, resource-constrained, low-power devices pose a challenge for computationally complex ML algorithm execution.

To explore the feasibility of deploying ML and DL algorithms on edge devices, this study first proposes a lightweight CNN model based on raw AE signals for concrete damage classification and evaluates its performance on an ultra-low-power microcontroller unit (MCU). Subsequently, to further simplify the algorithm and explore the adaptability across various MCU platforms, a raw AE signal-based Artificial Neural Network (ANN) model is proposed, and its deployment performance on multiple MCUs is assessed. Additionally, the study assesses the impact of feature extraction on ANN performance with raw AE signals on MCUs, finding that using raw data directly is more resource and time-efficient. Lastly, the study investigates the generalization ability of the aforementioned CNN on a carbon fiber panel AE dataset, as well as the performance of 13 traditional ML algorithms on this dataset and their final deployment performance on MCUs. Due to the small size of the dataset, various data augmentation methods were also introduced and their impact on model robustness and accuracy was evaluated.

This thesis demonstrates for the first time that real-time inference on edge devices using AE signals for SHM is feasible. It also effectively demonstrates how to balance the critical trade-offs between accuracy, resource demands, and power consumption. Different MCUs and signal preprocessing methods are evaluated, and the impact of various data augmentation techniques on the accuracy of different ML algorithms and their inference robustness is explored in response to the challenge of collecting AE data, which is crucial for the next generation of SHM devices.

Place, publisher, year, edition, pages
Sundsvall: Mid Sweden University, 2024. p. 48
Series
Mid Sweden University licentiate thesis, ISSN 1652-8948 ; 204
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:miun:diva-51322 (URN)978-91-89786-69-1 (ISBN)
Presentation
2024-06-13, C312, Holmgatan 10, Sundsvall, 13:00 (English)
Opponent
Supervisors
Note

Vid tidpunkten för framläggningen av avhandlingen var följande delarbeten opublicerade: delarbete 4 och 5 (inskickade manuskript).

At the time of the defence the following papers were unpublished: paper 4 and 5 (submitted manuscripts).

Available from: 2024-05-14 Created: 2024-05-13 Last updated: 2024-05-14Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Zhang, YuxuanAdin, VeysiBader, SebastianOelmann, Bengt

Search in DiVA

By author/editor
Zhang, YuxuanAdin, VeysiBader, SebastianOelmann, Bengt
By organisation
Department of Computer and Electrical Engineering (2023-)
In the same journal
IEEE Transactions on Instrumentation and Measurement
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 281 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf