Mid Sweden University

miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Fibre morphology affects the bonding and densification of hot-pressed thermomechanical pulp-based paper
Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering. MoRe Research.ORCID iD: 0000-0002-5813-0188
Holmen Paper.
MoRe Resarch.
MoRe Resarch.
Show others and affiliations
2022 (English)In: Proceedings of the International Mechanical Pulping Conference, 2022, p. 142-148Conference paper, Published paper (Other academic)
Abstract [en]

A successful way to increase the strength properties for pulps based on lignin-rich fibres is to compress the fibre structure at high temperature by means of hot-pressing technology. The fundamental knowledge of how the fi-bre morphology influences the mechanical properties when a paper sheet is hot-pressed is still scarce. Paper sheets based on thermomechanical pulp (TMP) produced with single disc and double disc refiners were compared. The effect of degree of refining was studied as well as the effect of fibre shapes by fractionating pulp with hydrocyclones. Additionally, the effect of fines was studied. All pulps were produced at the Holmen Bra-viken Mill, Norrköping, Sweden with Norway Spruce (Picea abies) as raw material. Handsheets (100 g/m2) with 62% ± 3 dryness were hot-pressed at temperatures up to 260°C at a pressure around 8MPa. The hot-press-ing increased both dry and wet strength for all pulps studied. This was true even for pulps with low fines con-tent and low refining energy. Even thick-walled fibres normally giving lower strength showed an increase of 100% when hot-pressed. In summary, hot-pressing technology can make it possible to use different TMPs to produce strong packaging materials for use in dry and wet conditions.

Place, publisher, year, edition, pages
2022. p. 142-148
Keywords [en]
hot-pressing, fibre morphology, TMP, strength, wet stability
National Category
Wood Science
Identifiers
URN: urn:nbn:se:miun:diva-47688OAI: oai:DiVA.org:miun-47688DiVA, id: diva2:1739793
Conference
IMPC 2022, Vancouver, BC, Canada, June 5-8, 2022
Available from: 2023-02-27 Created: 2023-02-27 Last updated: 2023-10-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Joelsson, ToveSandberg, ChristerNorgren, SvenEngstrand, Per

Search in DiVA

By author/editor
Joelsson, ToveSandberg, ChristerNorgren, SvenEngstrand, Per
By organisation
Department of Chemical Engineering
Wood Science

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 114 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf