Mid Sweden University

miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Impact of dynamic friction on race times in cross-country skate skiing - a numerical simulation study
Mid Sweden University, Faculty of Science, Technology and Media, Department of Quality Management and Mechanical Engineering. (Sports Tech Research Centre)
Mid Sweden University, Faculty of Science, Technology and Media, Department of Quality Management and Mechanical Engineering. (Sports Tech Research Centre)ORCID iD: 0000-0003-1324-9828
Mid Sweden University, Faculty of Science, Technology and Media, Department of Quality Management and Mechanical Engineering. (Sports Tech Research Centre)
2021 (English)In: European College of Sports Science Virtual Congress, September 8-10, 2021, 2021Conference paper, Oral presentation with published abstract (Refereed)
Abstract [en]

INTRODUCTION:Dynamic friction is an important parameter in cross-country skate skiing. A reduction of the dynamic frictional coefficient (µ) with 47%can increase the time to exhaustion with 50% when roller-ski skating [1]. With normal ski preparation µ may vary up to 15% due to theski base texture [2]. To isolate the impact of µ on race time, numerical simulations with a power-balance model could be used aspreviously demonstrated [3],[4]. Field measurements have provided more detailed relationships for propulsive power and drag areawith the skating sub-techniques, allowing more reliable simulations [5]. Thus, the aim of this study was to examine the impact ofdifferent dynamic frictional coefficients on the required time to complete a cross-country skate skiing.METHODS:A power balance model for cross-country skate skiing was implemented and solved in Matlab for skiers with body masses of 70, 80and 90 kg respectively. Propulsive power was modelled as a function of speed, acceleration and body mass [5]. Additionally, fivevalues of µ and three wind conditions were examined, giving a total of 45 combinations. These were all simulated on two differentcourses. Total race times were taken from a 15.6 km race (5 laps of the 3 km biathlon race course in Östersund) imported fromGPS-data. Speeds at specific inclination angles were taken from a fictional course with sections of constant inclination angle (meanspeed downhill, steady state speed on the uphill and flat). In the 15.6 km race the ambient winds were aligned to give either 4 m/stailwind in the majority of downhill sections and headwind uphill (4SW), the opposite (4NE) or zero wind. In the fictional course windwas either 4 m/s tailwind, 4 m/s headwind or zero through the entire race.RESULTS:The mean total race time in the 15.6 km race was 2240.7±141.1 s, with shorter race times for the heavier skier (90 kg 19.2±1.3 s < 80kg 22.2±1.3 s < 70 kg) and for tailwind uphill (4NE 5.0±2.0 s < zero wind 5.9±2.0 < 4SW). Changing µ from 0.013 to 0.015 increasedthe total race time for the 70, 80 and 90 kg skiers with 33.6 s (1.53%), 34.0 s (1.57%) and 34.0 s (1.58%) respectively. Changing µfrom 0.025 to 0.027 gave 34.6s (1.44%), 34.2s (1.44%) and 35.1s (1.49%) increased race time for the 70, 80 and 90kg skiersrespectively. The changes in speed from the 70 to 80 to 90 kg skiers were all below 0.43% on the uphill and between 0.70 and 1.53%on the flat and downhill. Changing µ gave largest change in speed for moderate downhill (e.g. 2.15%, µ 0.015 to 0.013) followed byflat (1.29%) and moderate uphill (1.22%).CONCLUSION:An absolute change in µ of 0.002, e.g. a different preparation of the skis, have slightly larger impact on faster (µ~0.014) than slowersnow (µ~0.026) but in both cases could turn the tide in a close race. This change in race time is generated mostly in sections withmoderate or no inclination angle.

Place, publisher, year, edition, pages
2021.
National Category
Sport and Fitness Sciences
Identifiers
URN: urn:nbn:se:miun:diva-46543OAI: oai:DiVA.org:miun-46543DiVA, id: diva2:1714708
Conference
2021 ECSS Virtual Congress, [DIGITAL], September 8-10, 2021
Available from: 2022-11-30 Created: 2022-11-30 Last updated: 2023-03-06Bibliographically approved
In thesis
1. Bioenergetic and Mechanical Modeling of Endurance Sports with Emphasis on Individualization
Open this publication in new window or tab >>Bioenergetic and Mechanical Modeling of Endurance Sports with Emphasis on Individualization
2023 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Endurance athletes strive to improve their race times by enhancing their physical abilities, techniques, tactics, and equipment. Numerical simulations can aid in this effort by enabling repeated testing under identical conditions, thus isolating the effect of a single variable of interest on race time. This thesis outlines the mechanical assumptions and mathematical formulations to conducting numerical simulations. Paper I exemplifies applications and limitations when using numerical simulations with a propulsive power model, by investigating the impact of dynamic friction on race times in cross-country skiing.

Further, the thesis introduces bioenergetic modeling as a possible method for more accurately modeling an athlete’s propulsive power. It provides an overview of existing bioenergetic models and describes a non-linear grey-box parameter estimation method for individualizing bioenergetic model formulations to reflect an individual athlete’s bioenergetic systems. In Paper II, an assessment of validation for two existing bioenergetic models is performed on an individual level when applied to simulated sprint time trials in cross-country skiing. The models show overall good agreement with measurement data but lack the ability to capture the dynamics of the human metabolic energy systems in more detail.

In Paper III, a new bioenergetic model is developed which describes the dynamic behavior of the metabolic energy supply systems and various sources of metabolic demand. The model is individualized and validated against intermittent cycling with varying power output. Although the model shows good agreement with measurements, it does not capture the details of the aerobic slow component and periods of recovery, indicating a need for continued development.

Abstract [sv]

Uthållighetsidrottare strävar efter att korta sina tävlingstider genom förbättrad fysisk förmåga, teknik, taktik och utrustning. Numeriska simuleringar kan hjälpa till i detta arbete genom att möjliggöra upprepade tester med identiska förhållanden där inverkan från en enskild variabel på tävlingstiden isoleras. Denna avhandling beskriver de mekaniska antaganden och matematiska formuleringar som krävs för att utföra numeriska simuleringar. Artikel I exemplifierar tillämpningar och begränsningar för simuleringar i kombination med en empirisk modell för framdrivande effekt genom att undersöka den dynamiska friktionens inverkan på tävlingstider i längdskidåkning.

Avhandlingen introducerar bioenergisk modellering som en möjlig metod för att mer exakt modellera en idrottares uteffekt. Vidare ges en översikt över befintliga bioenergiska modeller och en metod för att anpassa bioenergiska modeller till att återspegla en specifik idrottares metabola system. I Artikel II utförs en utvärdering av validiteten för två befintliga bioenergiska modeller på individnivå när de tillämpas på simulerade sprintlopp i längdskidåkning. Modellerna visar överlag god överensstämmelse med mätdata, men saknar förmågan att fånga detaljerna i de mänskliga metaboliska energisystemens dynamik.

I Artikel III utvecklas en ny bioenergisk modell som beskriver dynamiken hos de metabola energiförsörjningssystemen och flera processer som ger upphov till metabola krav. Modellen individanpassas och valideras mot intermittent cykling med varierande uteffekt. Modellen visar god överensstämmelse med mätdata, men lyckas inte fånga detaljerna i det aeroba systemet vid de högsta uteffekterna eller vid perioder av återhämtning, vilket motiverar fortsatt utveckling.

Place, publisher, year, edition, pages
Östersund: Mid Sweden University, 2023. p. 44
Series
Mid Sweden University licentiate thesis, ISSN 1652-8948 ; 194
National Category
Other Engineering and Technologies not elsewhere specified
Identifiers
urn:nbn:se:miun:diva-47731 (URN)978-91-89786-04-2 (ISBN)
Presentation
2023-04-03, Q221, Akademigatan 1, Östersund, 13:15 (English)
Opponent
Supervisors
Funder
Swedish Agency for Economic and Regional Growth, 20202610
Note

Vid tidpunkten för framläggningen av avhandlingen var följande delarbete opublicerat: delarbete 3 (inskickat).

At the time of the defence the following paper was unpublished: paper 3 (submitted).

Available from: 2023-03-17 Created: 2023-03-06 Last updated: 2023-07-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

http://wp1191596.server-he.de/DATA/EDSS/C26/26-0627.pdf

Authority records

Lidar, JuliusSundström, DavidAinegren, Mats

Search in DiVA

By author/editor
Lidar, JuliusSundström, DavidAinegren, Mats
By organisation
Department of Quality Management and Mechanical Engineering
Sport and Fitness Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 158 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf