Mid Sweden University

miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Lightweight Convolutional Neural Network Model for Concrete Damage Classification using Acoustic Emissions
Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.ORCID iD: 0000-0002-8382-0359
Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.ORCID iD: 0000-0001-9572-3639
2022 (English)In: 2022 IEEE Sensors Applications Symposium, SAS 2022 - Proceedings, IEEE, 2022Conference paper, Published paper (Refereed)
Abstract [en]

In this study, a convolutional neural network (CNN) model was developed for non-destructive damage classification of concrete materials based on acoustic emission techniques. The raw acoustic emission signal is used as the network model input, while the damage type is used as the output. In the study, 15,000 acoustic emission signals were used as the dataset, of which 12,000 signals were used for training, 1,500 signals for validation, and 1,500 signals for testing. Adaptive moment estimation (Adam) was used as the learning algorithm. Batch normalization and dropout layers were used to solve the overfitting problem generated in earlier versions of the model. The proposed model achieves an accuracy of 99.70% with 20,243 parameters, which provides a significant improvement over previous models. As a result, the classification of damages and decisions based upon them in non-destructive structural health monitoring applications can be improved. 

Place, publisher, year, edition, pages
IEEE, 2022.
Keywords [en]
acoustic emission, convolutional neural network, damage classification, Non-destructive
National Category
Control Engineering
Identifiers
URN: urn:nbn:se:miun:diva-46299DOI: 10.1109/SAS54819.2022.9881386ISI: 000861380600060Scopus ID: 2-s2.0-85139088014ISBN: 9781665409810 (print)OAI: oai:DiVA.org:miun-46299DiVA, id: diva2:1704987
Conference
17th IEEE Sensors Applications Symposium, SAS 2022, 1 August 2022 through 3 August 2022
Available from: 2022-10-20 Created: 2022-10-20 Last updated: 2024-05-13Bibliographically approved
In thesis
1. Tiny Machine Learning for Structural Health Monitoring with Acoustic Emissions
Open this publication in new window or tab >>Tiny Machine Learning for Structural Health Monitoring with Acoustic Emissions
2024 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Acoustic Emission (AE) technology, as one of the non-destructive Structural Health Monitoring (SHM) methods, is increasingly utilized for the damage prediction, classification, maintenance, and real-time monitoring of infrastructure. Addressing the need for low latency, power consumption and high portability, a novel approach has been adopted where processing algorithms are embedded close to the sensors on these devices. Continuous data monitoring and collection, coupled with data processing and interpretation comparable to human experts, are anticipated from the next generation of the Internet of Things and smart sensing systems. While Machine Learning (ML) and Deep Learning (DL) has been successfully applied in a number of domains including SHM, resource-constrained, low-power devices pose a challenge for computationally complex ML algorithm execution.

To explore the feasibility of deploying ML and DL algorithms on edge devices, this study first proposes a lightweight CNN model based on raw AE signals for concrete damage classification and evaluates its performance on an ultra-low-power microcontroller unit (MCU). Subsequently, to further simplify the algorithm and explore the adaptability across various MCU platforms, a raw AE signal-based Artificial Neural Network (ANN) model is proposed, and its deployment performance on multiple MCUs is assessed. Additionally, the study assesses the impact of feature extraction on ANN performance with raw AE signals on MCUs, finding that using raw data directly is more resource and time-efficient. Lastly, the study investigates the generalization ability of the aforementioned CNN on a carbon fiber panel AE dataset, as well as the performance of 13 traditional ML algorithms on this dataset and their final deployment performance on MCUs. Due to the small size of the dataset, various data augmentation methods were also introduced and their impact on model robustness and accuracy was evaluated.

This thesis demonstrates for the first time that real-time inference on edge devices using AE signals for SHM is feasible. It also effectively demonstrates how to balance the critical trade-offs between accuracy, resource demands, and power consumption. Different MCUs and signal preprocessing methods are evaluated, and the impact of various data augmentation techniques on the accuracy of different ML algorithms and their inference robustness is explored in response to the challenge of collecting AE data, which is crucial for the next generation of SHM devices.

Place, publisher, year, edition, pages
Sundsvall: Mid Sweden University, 2024. p. 48
Series
Mid Sweden University licentiate thesis, ISSN 1652-8948 ; 204
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:miun:diva-51322 (URN)978-91-89786-69-1 (ISBN)
Presentation
2024-06-13, C312, Holmgatan 10, Sundsvall, 13:00 (English)
Opponent
Supervisors
Note

Vid tidpunkten för framläggningen av avhandlingen var följande delarbeten opublicerade: delarbete 4 och 5 (inskickade manuskript).

At the time of the defence the following papers were unpublished: paper 4 and 5 (submitted manuscripts).

Available from: 2024-05-14 Created: 2024-05-13 Last updated: 2024-05-14Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Zhang, YuxuanBader, SebastianOelmann, Bengt

Search in DiVA

By author/editor
Zhang, YuxuanBader, SebastianOelmann, Bengt
By organisation
Department of Electronics Design
Control Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 237 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf