Soft sensor for snow density measurements
2022 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE credits
Student thesis
Abstract [en]
The aim of this project was to examine if a machine learning model could be used to predict snow density from six different weather parameters. These were artificially generated snow density, air temperature, ground temperature, relative humidity, windspeed and the snow depth change. The questions asked were what parameters correlates to the snow density, what model will perform best and could this approach be a better alternative to measure snow density manually. The research was performed in the application Regression Learner in MATLAB by testing five different premade machine learning models on a dataset. The premade models were, Linear Regression, GPR Matern 5/2, SVM Medium Gaussian, Wide Neural Network and Trilayered Neural Network. Also, the project includes data collection, data cleaning, data modification, data generation, training, testing, and evaluating the models. The results show that air temperature and windspeed overall are the most important parameters and the GPR Matern 5/2 and the Wide Neural Network had the highest performance. Lastly, it was concluded that the machine learning model could be a better alternative to measuring snow density with a real sensor.
Abstract [sv]
Målet med detta arbete var att undersöka om en maskininlärningsmodell kunde användas för att förutse snödensitet utifrån sex olika väderparametrar. Dessa var artificiell genererad snödensitet, lufttemperatur, marktemperatur, relativ luftfuktighet, vindhastighet och snödjupsförändring. Frågeställningarna som skulle besvaras var vilka väderparametrar som korrelerar med snödensiteten, vilken eller vilka modeller som presterade bäst samt om maskininlärningsmodellen skulle kunna vara att bättre alternativ till att mäta snödensitet manuellt. Undersökningen utfördes i applikationen Regression Learner i MATLAB genom att testa fem olika förhandsgjorda modeller vilka var Linear Regression, GPR Matern 5/2, SVM Medium Gaussian, Wide neural network och Trilayered neural network. Projektet inkluderar även datainsamling, städning av data, datamodifiering, datagenerering, träning, testning och evaluering av modellerna. Resultaten visar att lufttemperaturen och vindhastigheten över lag är viktigast för modellerna och att GPR Matern 5/2 samt Wide neural network presterade bäst. Slutligen kunde man argumentera för att maskininlärningsmodellen är ett bättre alternativ till att mäta snödensitet manuellt.
Place, publisher, year, edition, pages
2022. , p. 58
Keywords [en]
Machine Learning, soft sensor, snow density, linear regression, GPR, neural network, SVM
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:miun:diva-45452Local ID: ET-V22-G3-081OAI: oai:DiVA.org:miun-45452DiVA, id: diva2:1678812
Subject / course
Electrical Engineering ET2
Educational program
Civilingenjör i elektroteknik TELTA 300 hp
Supervisors
Examiners
2022-06-302022-06-302022-06-30Bibliographically approved